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The geometry of strain superposition in two and three dimensions is treared mathe­
matically. The first half of the paper is devoted to the two-dimensional case. After an 
introductory study of examples on sequential superposition of pure- and simple shear 
simultaneons superposition of these two classes of strain is treared more thoroughly. 
Simultaneons superposition implies progressive deformation. In the course of progressive 
deformation the finite strain is determined by the integrated version of the rate-of­
deformation equation. Integration of the rate-of-deformation equation yields the 
particle-path equation which describes the path of any partide in the deforming body. 
Applied on the set of particles lying on a circle in the undeformed body the particle­
path equation gives the strain ellipse and describes the progression of the strain ellipse 
in time. In general the partide paths are open curved Iines. Special combinations of 
simple shear and pure shear give, however, closed partide paths which eonstirute sets 
of concenttic ellipses . Under such circumstances the strain ellipse pulzates and rotate� 
completely around the dock during the deformation, the number of rotations depending 
only on the extent of final strain. 

The seeond half of the paper treats the geometry of three-dimensional strain. Also 
in this part examples on sequential superposition of two classes of strain are firstly 
considered as introduction to the more interesting simultaneons superposition. Rate-of­
deformation equations for the three-dimensional simultaneons superposition of strain 
are developed. These are integrated to form the particle-path equations in three dimen­
sions. From the latter the finite strain, and in particular the strain ellipsoid, follow 
at any moment which we ehoase to consicler during the deformation. For special 
combinations of irrotational three-dimensional strain and simple shear in a direction 
inclined to the principal axes for the irrotational strain the partide paths assume the 
form of three-dimensional spirals. The corresponding strain ellipsoid undergoes a kind 
of pulzating motion at the same time as it deforms progressively. For example, the 
Iong principal axis may continne to grow with time while the short and the median 
axes pulzate, their product, however, decreasing continuously with time. (The latter 
condition follows from the restriction of the theory to incompressible substances - i.e. 
the volume of the strain ellipsoid remains constant.) 
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The two-dimensional case 
lntroduction 
The two chief classes of two-dimensional strain 
of incompressible materials are the irrotational 
pure shear and the rotational simple shear. These 
are, however, special cases of strain which are 
applicable to rocks. Indeed, the strain in rocks 
is generally three-dimensional; if one nevertheless, 
however, wishes to simplify the treatment by 
assuming a two-dimensional geometry one at least 
must consicler a more complicared deformation 
geomerry than that defined either by pure shear 
or by simple shear. Negleeting the elastic com­
pressibility of rocks and assuming chemically do­
sed systems (no material transport to and fro the 
volume of rock under consideration) we shall find 
that a combination of pure shear and simple shear 
is general enough to describe most kinds of plane 
strain which rocks may undergo. The combina­
tion may either be simultanenus or sequential. 

Pure shear is an irrotational finite plane strain 
defined by compression in one direction ( the prin­
cipal compressive strain) and a volume-conserving 
extension (principal extensive strain) normal to 
the compression. Both longitudinal strain and shear 
strain vanish in the direction normal to the plane 
containing the two principal axes of strain. The 
paths of movement of the particles are families 
of hyperbolas whose axes bisect the angle between 
the axes of principal strains. In the following we 
shall let the principal extensive strain coincide 
with the x axis of our orthogonal coordinate system 
and the principal compressive strain coincide with 
the y axis. 

In this coordinate system finite pure shear 1s 
described by the linear transformation 

( l )  

Here x0 and Yo are the initial mordinates to a 
partide which is being displaced with the body, 
and x and y the coordinates to the same partide 
after the deformation. Ex and fy are the finite 
principle strains in the directions x and y respecti­
vely. 

Simple shear is a rotational plane strain defined 
by a finite shear strain in a given direction which 
remains fixed (does not rotate) in the deforming 
body and along which longitudinal strain vanishes. 
This direction may be distinguished as the simple 
shear direction and should not be mnfused with 
the direction of maximum shear strain. The partide 

Bull. geol. Inse. Uni v .  Uppsala, N. S .  6 ( 1 974) 

paths are straight lines paraHel to the simple shear 
direction. 

let the simple shear direction coincide with 
the axis x' in our coordinate system, y' being nor­
mal to x'. Simple shear is then described by the 
linear transformation 

(2 )  

where y defines the magnitude of  finite simple 
shear strain. x:, y: are the initial mordinates to a 
partide which is being displaced with the body 
and x', y' the final mordinates to the same partide. 

Sequential superposition of pure and simple shear 
Pure and simple shear are rather artificial types 
of strain which, however, may be combined to 
give more realistic strain patterus of the kinds 
sometimes occurring in deformed rocks. The com­
posite finite strain may either be the result of 
sequential superposition or of simultaneous super­
position. It is known that the composite finite 
strain resulting from the sequential superposition 
of two or more less camplex strain geometries 
generally depends upon the order of superposition; 
see for example Ramsay, 1967. The treatment of 
an example may be informative. To make the su­
perposition as general as possible without, how­
ever, departing from two-dimensional geometry, 
we ler the direction of simple shear ( the x' ax is) 

x 

F i g. l. Relaci ve orientation of the coordinate system 
x, y for pure shear and the system x', y' for simple shear. 
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in the simple-shear deformation deviate by an angle 
(} in the anti-clockwise sense from the axis of 
principal extensive strain in the pure-shear defor­
mation (Fig. l ) .  It is convenient to select the axes 
of principal strain in the pure-shear deformation 
as the coordinate axes to which all displacements 
will be referred. The x axis coincides with the 
strain Ex and the y axis parallels the strain fy· The 
displacements associated with the pure shear are 
then given by the linear transformation already 
considered (eq. ( 1 ) ) .  To make the simple-shear 
displacements relate to the same coordinate system 
we must rotate the coordinate axes x' and y' (eq. 
( 2 ) )  clockwise through an angle (} in relation to 
the simple shear direction. This rotation ear­
responds to a transformation of coordinates be­
tween the two coordinate system thus 

( 3 )  [ x' l 
= � cosB sin(} l f x l 

' 
y' j L - sin(} Ieos(} j L y j 

where x', y' are the coordinates in the system 
whose x' axis parallels the simple-shear direction 
and x, y are the coordinates to the same point in 
space in a system whose x axis is rotared clock­
wise through the angle B relative to the axis x'. 

Transformation ( 3 )  applies both to the initial 
coordinates and to the final coordinates in the 
simple-shear equation ( 2 )  which consequently 
rakes the form presenred as eq. ( 4) . 

(4) 
� cos(J sin(} ]l x l = 
l - sin(} cos8 LY j 

= � l y l f cos(J sin(} l 
L O l j L - s inB cos(J 

Expansion of eq. ( 4) y i elds 

[::l 
(a) 

(5) 
xcos8+ysin(} = (cosB - ysin8)x0+ 
+(sin(}+ ycos8)y0 

(b) - xsin(J + ycos(} =- x0sin(} + y0cos8. 

Solved for x and y these equations give 

(a) x= ( l - ysinBcosB)x0+y(cos2B)y0 
(6) 

(b) y= - (ysin28)x0+( l+ysin8cos8)y0 ,  

or expressed in matrix form: [Xr l [ ( l - ysin8cos8 )  ycos28 l 
Yr 

-
- ysin28 ( l  +ycosBsinB) 

� X0y lj · 
lYor 

Equation (7 )  transforms particles from x0, Yo to 
x, y when the simple shear strain is y and the 
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simple shear direction makes an angle (} with the 
x axis. 

In the same coordinate system the pure shear 
earresponds to the transformation shown as eq. (8 ) .  [x, l - � ( l+ E.,) O l � X0, l 
(8) 

y, j- LO ( l+ey) j lYoJ 
Assume now that a substance (a rock) is first 

deformed in pure shear and subsequently in simple 
shear. In this case the final coordinates x, and 
y, after the pure-shear deformation are to be taken 
as the initial coordinates Xor and Yor for the sub­
sequent simple shear deformation. Hence expres­
sion (9) follows 

which must be inserred in eq. (7 )  to obtain the 
composite transformation which earresponds to 
the sequence pure shear overprinted by simple 
shear. The composite transformation takes the 
form shown in eq. ( 10 ) .  r. x l [ ( 1 - ysinBcosB) ycos2B l 
( 1 0) - j l y 

-
- y sin Z (J ( l+ ysin8cos8) 

� ( l+ f x) O l � X0 l 

LO ( l+ey) j lYo j -

Carrying out the matrix mulitplication we obtain 

( 1 1 )  l x ] = 

l y 

� ( l - rsin8cos8) ( l+ex> rcos2B ( l+ey) ' lx0 ' . 

l - ysin2B ( l  +Ex) ( l+ ysin8cos8) ( 1  +ty) j LYJ 
On the other hand we may reverse the order, 

starting with simple shear and following up with 
pure shear. In this sequence we have 

( 1 2 )  

and the composite transformation becomes 

( l 3 )  � x l = � ( l+ex> O l 

LY LO ( l+ey) j � ( 1 - ysin8cos8 )  ycos28 l � x0 l 

L - ysin28 ( l+ysin8cos8) j LYo j 
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Fig. 2. An initial square (l) deformed in sequential superposition of simple shear and pure shear. 
The axes x and y coincide with the principle strains for the pure shear while the simple shear di­
rection is in elined to the coordinate axes, see text. A shows the result w hen simple shear preeecles pure 
shear, B when the order of superposition is reversed. The erossed arrows define the principal 
axes of strain. The origin of the coordinate system is fixed in the deforming body. 

or 

( 14) 
l x l

_ 
l y J-l ( 1 - ysin8cos8) (l+ c,J 

l - ysin28 ( 1  + cy) 

ycos28 (l + cx) l l x0 l
. 

(l + ysin8cos8) (l + cy) J LYo J 
Since the square matrix of eq. ( 14) is not identical 
to the square matrix of eq. ( 1 1 ) the final coordina­
tes x, y will generally not be identical in the two 
sequential superpositions of opposite order if the 
initial coordinates are the same. 

As an example assume Ex = 2, E y =  -i, y = l, 
and 8 = 45 °. Inserted in eq. ( 1 1 ) t hese numerical 
val u e s yield eq. ( 15) 

( 15) 
l x l 

= 
l 1 ,5000 

l y J L - 1 ,5000 

0,1 6667 l l x0 l 

0,5000 J LY o J 
which gives the final transformation of points 
in the case that pure shear preeecles simple shear. 
The deformation of a square is shown in Fig. 2B. 
In the case that simple shear preeecles pure shear 

the numerical values in our example must be 
inserred in eq. ( 14) . The result is eq. ( 1 6) .  

( 1 6) 
[ x l -1 1 ,5000 

y J- L - 0,1 6667 

1 ,5000 l l X0 l 

0,5000 J LYo J 
The deformation of a square according to this 
transformation is shown in Fig. 2A. 

In the special cases that the direction of simple 
shear coincides with the x- or the y axis the angle 
8 is 0° and 90° respectively. For 8 = O  the 
transformation for the superposition takes the 
form shown in eq. ( 17 )  in the case that pure 
shear preeecles simple shear, and the form shown 
m eq. ( 18) if the sequence is reversed. 

( 1 7) 

( 1 8) 

y ( l + cy)l l X0 l 
(l + cy) J l Yo J 

Since generally Ex� E y the coefficient matrices 
of eqs. ( 1 7 )  and ( 18) are not identical and i t 
follows that the resulting composite strain also 
in this case depends upon the order in which 
the two types of deformation are superimposed. 

The deformation of an initial circle into the 
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finite strain ellipse probably gives more informa­
tion on the various details of the strain geometry 
than the deformation of any other kind of figure. 
W e shall therefore stud y the strain ellipses create::l 
by the sequential superposition. The procedure 
to follow is first!y to solve the appropriate equa­
tion for the finite deformation ( i .e. one of the 
eqs. ( 1 1 ) , ( 14) , ( 17) or ( 18) ) with respect to the 
initial coordinates x0 and Yo· The expressions for 
x0 and Yo thus obtained are then inserred in the 
equation for the initial circle, eq. ( 2 1 ) . The result 
is the equation for the strain ellipse. 

Suppose that we write the general equation for 
the composite deformation as follows ( eq. 19) ) : 

( 19) 
� x l 

= �
A B l 

� x
0 l 

l Y J l D E J l Y o J 
where the coefficients A, B, D and E depend upon 
which superposition we are studying ( i.e. whether 
it is eq. ( 1 1 ) , ( 14) , ( 17) or ( 1 8) ) . 

Inversion of the matrix gives the initial coordi­
nates expressed in terms of the final coordinates, 
thus : 

(20) r x, Jl = r - � -� J' r x 'l· 
l Yo l L L l Y 

Here L = AE-BD is the determinant to the 
coefficient matrix of eq. ( 19) . 

The initial circle with unit radius is described 
by eq. ( 2 1 ) : 
( 2 1 ) x; +y; =l, 
in which we insert the expressions for x0 and 
Yo in order to obtain the deformed circle, i.e. 
the strain ellip�e, eq. ( 22 ) , 

(22) 
_E_z
_+_D_z _ x2 _ 2 BE+ AD x + 

(AE-BD)2 (AE-BD)Z 
y 

+ AZ+BZ 
----- y2-l 
(AE-BD)2 

This is the equation for an ellipse (or another 
conic seetian depending upon the character of 
the coefficients) with center in the origin and 
axes generally inclined to the coordinate axes. 

One way of determining the axes of the strain 
ellipse and its inclination is to put the equation 
for the ellipse in matrix form, thus : � E2+D2 BE+AD �� l 
(2 3 ) (x y) l _BE_�-�- D

-

AZ�zB2 j l x jl= l 
1'-,2 1'-,2 l y 
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and to take the eigenvalue of the coefficient matrix 
of the ellipse equation. (For the method of deter­
mining the eigenvalues of a matrix �ee e.g. Hadley, 
1961 .) As discussed for example by Hammarling 
( 1970 p. 20) , the two eigenvalues of the 2 X 2 
matrix of the strain ellipse equation furnish both 
the length of the axes, say r1 and r2, and the slope 
of the axes, say ydx1 and y2/x2. The relationships 
are 

(a) 

(24) 
(b) 

(a) 

(25) 

(b) 

l rl=--
\rJ:;,, 
l f·>=--

- 'J A.2 ' 
E2+D2-A_l tg<Pl =ydxl =--­BE+AD 
BE+AD 

A2+B2-A.t
, 

E2+D2-),., 
tg<f>2 = Yzlxz 

= -

BE+AD 
BE+AD 

A2+B2-A.2 
Here },1 and A.2 are the two eigenvalues of the 
coefficient matrix in eq. (2 3) . The eigenvalues as 
expressed in terms of the coefficients in the 
matrix are 

(26) A-= l (A2+B2+D2+E2± 
1 2 (AE-BD)2 

±'J (A2+B2-D2-E2)2+4(BE+AD)2) 
The axes of the strain ellipses for our two ex­
amples of sequential superposition are shown in 
Figs. 2A and 2B. 

Simultaneous superposition of strain: 
progressive deformation 
A plastic or viscous body may be strained in a 
fashion that can be treated as a simultanenus super­
position of two or more classes of less camplex 
deformation, such as e.g. pure shear and simple 
shear. When this occurs the composite strain at 
any moment during the deformation depends 
upon the absolute and the relative rate of change 
of the pure shear and of the simple shear. 

The rate of change of longitudinal strain is 

commonly identified by the symbol i = �; and the 

rate of change of shear strain by the symbol 
dy h 

o o 
y - dt 

w ere t 1s time. 
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Note that we define de as dl/l ( i .e. infinitesimal 
natural strain) and not as dl/10• The difference 
between dl/l and dl/l0 is that l is the distance 
between two points at any instance we wish to 
consicler during the straining process while l0 
is the distance between the points prior to strai­
ning. The symbol e is accordingly identical to 
dl�dt 

where dl/dt is the rate of displacement. 

In the above discussion of sequential superposi­
tion we were interesred in the finite strain and 
the corresponding finite transformation of poims 
such as defined by eqs. ( 1 1 ) ,  ( 14) ,  ( 1 7 )  and ( 18) . 
These equations inform only on the relation be­
tween the initial geometry and the final geo­
metry. No information is supplied on the path 
from the initial- to the final state. W e are now 
interesred in the progression of the deformation 
from the initial- to the final situation. That means 
we must consicler the rate of change of strain and 
the corresponding rate of change of displacement 
of points. In other words we must consicler the 
differential equations which relate displacement 
to strain. The rates of change of the displacement 
components x and y to a point in a homogeneaus­
ly deforming body are related to the rate of 
change of strain according to the simple eqs. (27 )  
and (28) . "Homogeneously deforming" means 
that the rate of ch ange of strain is eonstant through­
out the body. 

(27 )  
� �e l 

= 
�Ex � l � X l 

l y, l O eJ l Y 
is valid for pure shear, and 

for simple shear when the simple-shear direction 
coincides with the x axis. 

In the general case when the simple-shear 
direction makes an angle () with the x axis the 
equation becomes samewhat more complicated. 
The sought equation can be shown to be : 

( 29) 
� x r l 

= 
�- ysin8cos8 

l Yr J l - ysin2() 

ycos2() � � x l 
ysin8cos8 J l y J . 

b 
. . dx 

d 
. dy 

In the a ove equanons x _ dt an y = dt. 
The subscripts e and y indicate whether the 
displacements relate to pure shear or to simple 
sh ear. 

Equation (29) follows when we operate on 
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either side of eq. ( 28) with the rotation matrix [ cos8 sin() IJ . .
1 1 d 

. 
(4) . srmr ar y as one m eq. . 

- smf) cos8 
In the course of the simu!taneous superposition 

of the two classes of strain any partide in the 
body moves along a path determined by the 
combined geometry of the pure shear and the 
simple shear. Therefore, at any moment during 
the deformation the coordinates x, y to a partide 
are to be used simultaneausly both in the equa­
tion for pure shear and in the equation for simple 
shear. In other words, eq. (27)  and eq. ( 29) 
(we ehoase to use the general simple-shear trans­
formation) are simultaneous equations when the 
two strains are combined contemporaneously. This 
means that the simultaneous superposition of the 
two kinds of strain is accomplished mathematically 
by adding the coefficient matrices in eqs. ( 27 )  and 
(29) ; at the same time the column matrices on 
the left side of the equations must also be added. 
(Note that the adding of the coefficient matrices 
in the present case of simultaneous superposition 
contrasts the multiplication of the coefficient 
matrices in the above case of sequential super­
position.) The adding yields 

r x l r ix-ysin8cos8 
(30) l = l l y l - ysin2() 

Here x=x,+xr and y=y,+:Yr· 
If the rates of change of strain, i, y, are kept 

eonstant during the deformation and Iikewise the 
direction of simple shear, 8, is fixed eq. (30) 
constitutes a system of ordinary linear differential 
equations with eonstant coefficients inasmuch as 

x �: and y ��. We shall refer to eq. (30) as 

the rate-of -dis placement equation. 

Two real and distinct eigenvalues of the matrix 
of the rate-of-displacement equation. - The solu­
tion of the system of differential equations (30) 
takes different forms depending upon whether the 
two eigenvalues of the coefficient matrix are 
distinct, coincident, zero, real or complex. If the 
eigenvalues are real and distinct the general form 
of the solution is :  

( 3 1 )  

(See books on ordinary differential equations, e.g. 
Kreider et al., 1 968.) Here x1 and x2 are the 
eigenvalues to the coefficient matrix in eq. (30) 
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and cii are eonstants determined partly by the 
initial coordinates, x0, ya. to the partide whose path 
we wish to follow, partly by the magnitudes of i.;, 
y and 8. The eigenvalues are also determined by 
the magnitudes of i, y and 8 such that all quami­
ties except the time, t, are eonstant in eq. ( 3 1 )  
i f  we have selected the initial position o f  a partide 
and i, y and 8 do not vary during the deforma­
tion. Equation ( 3 1 )  consequently shows how the 
coordinates to a partide change with time, i.e. the 
equation describes the partide path. W e s hall 
sametime refer to eq. ( 3 1 )  as the particle-path 
equation. 

For the further discussion we simplify the nota­
tion of the coefficient matrix in eq. ( 30 ) ,  thus : 

The eigenvalues follow then from the determinant 
equation 

( 33 )  

which gives 

( 34) 

where the positive and the negative square roat 
associate with respective x1 and x2 . 

Having thus determined x1 and x2 - which 
are to go in the exponents in the particle-path 
equation - expressed in terms of ix, iy, y and 8 
we shall seek expressions for the coefficients cu. 
The following reasoning is valid provided the 
eigenvalues are real and distinct. 

Firstly we nate that at t = O eq. ( 3 1 )  becomes 

( 35) 

where x0 and Yo are the initial coordinates to the 
particles we wish to follow. But we need two more 
independent equations to determine the four un­
known coefficients. lt is known (e.g. Kreider et al. 
1 968) that the ratio c1 1 /c2 1 equals the ratio be­
tween the components of the eigenvector that 
belongs to the eigenvalue x1 , and that the ra tio 
c1 2/ c2 2  equals the ratio between the components 
of the eigenvector that belongs to the eigenvalue 
x2 . This is expressed in eqs. ( 36) and ( 37 ) .  

Homogeneous strain and progressive deformation 4 1  

( 36) 

(37 )  

From 

(a) 

� (a1 1-;.cl) a1 2 l 
l a2 1 Ca2 2  -x1 

J 
� (a1 1-x2) a1 2 l 
la2 1 (a2 2-xz) J 

eqs. ( 35) , ( 36) and ( 37 )  

Cx2 -a1 l)xo-a1 2Yo 
x2-xl 

(a1 1  -xl)xo +at2Yo 
x2-xl 

� Ct l l 
l c2 1 J = O, l Ct 2 IJ =o. 
l c2 2  
we obtain 

Cx1 -a1 1)(:--c2 -a1 l)aiJ x0-Cx1 -a1 1)y0, 

(b) 

(38)  

(c) c2 1 = 

When the expressions for aii and x; ( formulas 
( 32 )  and ( 34) ) are inserred in the formulas for 
cu we see that the coordinates x and y as expressed 
by eq. ( 3 1 )  are uniquely determined by the initial 
coordinates x0 and y0, by the strain rates i and y, 
by the direction of simple shear relative to the 
x axis, 8, and of course by the lapse of time, 
t, after the commencement of the straining. 

To gain insight inta the character of the de­
formation a numerical example will be treated. 
In so doing we shall take care to ensure that the 
numerical value selected give eigenvalues that are 
both real and distinct because that is a necessary 
condition for the above mathematical treatment. 
Later in this paper the implication of camplex 
eigenvalues shall be studied. Firstly one nates that 
the term i(a1 1  + a2 2) in the eigenvalue farmula 
( 34) vanishes because ix = -iy for incompressible 
materials undergoing plane strain. Only the roat­
sign term therefore remains in the eigenvalue 
whose expression reduces to 

(39) x; = ±V i.; -2ixysin8cos8 

w hen the formulas for a1 1 , a1 2 , a2 1 and a2 2 are 
introduced and E y is p ut equal to -Ex· Real and 
distinct eigenvalues consequently occur either 
w hen 

or when 

ix> 2ysin8cos8 

i:x< O ,  
provided that y i s  positive ( i.e. the displacement 
in the direction of positive x increases when y 
increases) and that the direction for the simple­
shear component of the composite strain lies in the 
first and third quadrants. The latter condition 
implies that sin8cos8 is positive. 
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Fig. 3. Progressive deformation shown at different times of square deformed in a combination 
of pure shear and simple shear, see text. Partide paths of the earner points also shown, so is the 
strain ellipse. The origin of the coordinate system is fixed in the deforming body. 

The conditions for real eigenvalues are met 
by the following selected quautities in a numerical 
example : 

(} = 45 °  
ix= - iy = 0,2 time unir- l 

y= 0,1 time unir - l. 
The corresponding eigenvalues are 

Xi = ±'V 0.Q2 = ± 0,14 142. 

Inserted in the farmula for cii listed above the 
selected quautities yield 

Cu = 1 ,03033x0 + 0, 17678y0, 
c1 2 = - 0,03033x0 - 0,1 7678y0 ,  
c2 1 = - 0,1 7678x0 - 0,0303 3y0, 
C z z = 0,1 7678x0 + 1 ,03033y0• 

Here x0 and Yo are the initial coordinates to the 
partide we wish to follow during the deforma­
tion. 

The above expressions for x; and cii go into 
eq. ( 3 1 )  which then expresses quantitatively the 
partide path in terms of the coordinates x and 
y as functions of time, see eq. ( 40) . 

(a) x =  ( 1 ,03033x0 + 0,17678y0 )exp(0 ,14 142t) -

( 40) - (0,03033x0 + 0,1 7678y0) exp( - 0,14142t) , 

(b) y = ( - 0, 1 7678x0 - 0,03033y0)exp(0 ,14 142t) + 
+ (0,1 7678x0 + 1 ,03033y0) exp( - 0,14142t) . 

let us follow firstly the movement and change 
of shape of an initial square whose edges were 
parallel to the coordinate axes and whose corners 
were initially located at the poins ( 1 ,1 ) ,  ( 1 ,2 ) ,  
( 2 , 1 )  and (2 ,2)  respectively (Fig. 3 ) .  

I n  Fig. 3B  are shown the partide paths o f  the 
earner points through the time t = O-+ t = 12  
time units. The distorred square i s  shown a t  time 
t =  4, 8, 10 and 1 2  units. 

The strain ellipse, however, gives more im­
mediate and detailed information on the character 
of strain than any other geometric figure. lt is 
therefore worth taking the additional mathemati­
cal labor needed to determine the progressive 
changes of the strain ellipse. 

An initial cirde with unit radius is described 
by the expression 

(41 )  

if its center coincides with the origin of  the co­
ordinate system. 

To follow mathematically the deformation of the 
initial cirde to an ellipse with continuously 
changing axial ratio we proceed as described 
above (p. 39 ff.) and sol ve the equations for the 
partide path (eq. ( 3 1 ) )  with respect to x0 and 
Yo· The initial coordinates thus explicitly expresse::l 
in terms of the finite coordinates x and y at any 
time, t, are now emplaced in the equation for 
the initial circle which consequently changes to 
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the equation for the strain ellipse at any time 
we choose to consider. 

With the expressions for cu inserted, eq. ( 3 1 )  
takes the form 

(42) 

where we have used the notation : 

Solved for x0 and Y o the system ( 42 )  yields 

( a) 

(44) 
(b) 

Ex-By Xo = 
AE-BD ' 

Ay-Dx 
Ya = 

AE-BD' 

w hi ch emplaced in the circle e q. ( 41) furnishes 
us with an expression for the strain ellipse : 

(45) -E2+D:_ x2-2 BE+ AD x + 
(AE-BD)2 (AE-BD)2 y 

A2+B2 , + ----------y2 = l . (AE-BD)2 

This is the equation for an ellipse (or another 
conic depending upon the character of the coeffi­
cients) with center in origin and axes generally 
inclined to the coordinate axes. For a system with 
given i, y and () the eigenvalues x1 and x2 are 
also determined, and the coefficients A, B etc. 
depend only upon the time t. Hence eq. ( 45) with 
the expressions for the coefficients introduced 
shows in fact how the ellipse rotates and becomes 
deformed in the course of the progressive defor­
mation. To show this explicitly we proceed to 
determine the functions between time and the 
orientation as weil as the lengths of the ellipse 
ax e s .  

Following the procedure previously applied the 
equation for the ellipse is now put in matrix 
form: 
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(46) r E2+D2 BE+AD lr l 

(x )l (AE-BD)2 -(AE-BD)2- j
l 
x �

= 
l. y l BE+AD A2+B2 

l
-
(AE-BD)2- (AE-BD)2 l y 

In this form the equation for the ellipse furnishes 
both the length of the axes and their orientation 
by means of the above mentioned standard proce­
dure of determining the eigenvalues and the eigen­
vectors. The eigenvectors that belong to the two 
eigenvalues of the coefficient matrix in eq. ( 46) 
coincide with the orientation of the axes of the 
ellipse, and the lengths of the axes are simply 

l l r1 = -----== and r2 =----== ( see p. 39) . We choose 
-y At -y A2 

A as the symbol for the eigenvalues connected 
with determining the strain ellipse to avoid con­
fusion with the eigenvalues x used to determine 
the partide path; see p. 4 1 .  The eigenvalues of 
the coefficient mat r ix in eq. ( 46) are the roats 
of the quadratic characteristic equation, hence: 

(47) k = l (A2+B2+D2+E2± 
1 2 (AE-BD)2 

±'J (A2+B2-D2-E2)2+4(BE+AD)2) . 
The ratios between the components y and x of 
the eigenvectors - and therefore also the inclina­
tion of the axes of the ellipse - are 

(a) 

( 48) 
(b) 

Y1 E2+D2-At 
tgWt = - = 

x1 AD+BE 

Y2 E2+D2-22 tg!Jh = -=------. 
x2 AD+BE 

(_[) are here the augles between the axes of the 
ellipse and the coordinate axis x. 

Fig. 3A shows how an initial circle changes 
into a strain ellipse whose axial ratio and axial 
slope change continuously in the course of time. 
The values used for E·x , y and () are defined on 
p. 42 .  

Comp!ex eigenvalues of the matrix of the rate-of­
displacement equation: periodic partide path and 
"pulzating" strain ellipse. - For incompressible 
materials of the kind under study the eigenvalues 
to the matrix in the rate-of-displacement equation 
(30) contain only the square roat part, thus 

( 49) %; = ± �-y e_;- 2ixysin()cos(). 

If i ;< 2ixysin()cos0, that is when O< ix< 
2ysin0cos0, the eigenvalues are camplex provided 
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that both y and the product sin8cos8 are either po­
sitive or negative. Remember that ix is always po­
sitive in our examples; see above. Since the general 
solution of the rate-of-displacement equarion con­
tains the eigenvalues as exponents, camplex eigen­
values mean that the solution is of periodic form: 

(a) x = cllcos(flt)+c12sin(flt), and 
(50) 

(b) y = c21 cos(flt) + c22sin(flt). 

Here fl = Y -E_; + 2ixysin8cos8 and c u are co­
efficients. 

That cll and Cz1 equal x0 and Yo respectively, 
is readily seen when x and y are put equal to the 
initial coordinates X0 and Y o when t = O. The two 
remaining coefficients are determined by differen­
tiation of eq. (50) with respect to t and equating 
the differentiated forms to the initial expressions 
for x and y (eqs. (30) and (32)) at time zero. 
This procedure yields 

(a) x = flc12 = allxo+a12Yo, 
(51) 

(b) y = flcz2 = a21xo+a22Yo· 
The consequent expressions for c12 and c22 are 

all a12 a2 1 a2 2 c12 = pxo+p yo; Cz2 = pxo+ pYo· 

The particle-path equations accordingly become 

(a) X = r COs(flt) + � sin(flt) J X0 + 
l fl 

(52) 

+ � sin(flt)ym 
fl 

(b) y = �sin(flt)x0+ 
fl [ a22 . l + cos(flt) +p sm(flt) jYo· 

These periodic equations describe partide paths 
that are closed in the sense that any partide will 
return to its starting point whenever (flt) is a 
multiple of 2n. 

This solution looks intriguing and deserves 
further analysis. It obviously gives a deformation 
partern quite unlike the straight partide paths 
occurring when the eigenvalues vanish (p. 47) 
or the curved but open paths implied by real 
eigenvalues (p. 42). 

Before studying the behavior of the strain ellipse 
under the conditions of complex eigenvalues some 
partide paths will be calculated. 
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Let y = l and 8 = 45 ° as before. For ix we 
select 0,25 (which also implies iy = -0,25) in 
order to make the eigenvalues complex. The se­
lected parameters generate the following coeffi­
cients and eigenvalues 
all = -0,25; a12 = 0,5; az1 =-0,5; a22 = 0,25, 

x; = ±Y o,252-o,2s = ±o,433i = ±fli. 
These quantities are to be inserred into eq. (52) 

which consequently reads 
(a) x = [ cos(0,433t)-0,57737 sin(0,433t) Jxo + 

+ [1,1547sin(0,433t)]y0, 
(53) 

(b) y = -1,1547sin(0,433t)x0+ 
+ [ cos(0,433t) + 0,57737 sin(0,433t) ]y0• 

The path traced by a partide originally at 
any given coordinate x0 and Yo is an ellipse whose 
axes bisect the coordinate axes such as shown in 
Fig. 4. Indeed, the paths of all particles in the 
body eonsritute a family of concentric ellipses, 
all with the same axial rario and the same orien­
tation, viz. the long axis making 45 ° angle with 
the positive x axis. The velacity along the paths 
relative to the fixed coordinate system increases 
proportional to the distance from origin as long 
as we are considering particles lying on the same 
radius. However, the velocity along any given 
path is not constant, neirher is the path velociry 

y 

Fig. 4. Partide path of a partide initially at x =  l, y =  
O. Positions shown at t =  l, 2 ,  3 etc. units of time. For 
the special combination of pure shear and simple shear 
needed for the closed path see text. 
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eonstant if we campare particles at the same 
distance from the center but at different radial 
angles. These relationships imply same strain in 
bodies affected by this particular combination 
of pure- and simple shear, but a chief part of the 
movements is a rigid rotation. 

The interesting novelty in the present case 
which puts it in contrast to the cases with straight 
or curved but open partide paths is the complete 
round-the-dock rotation, the number of complete 
eyeles only depending upon the time involved. In 
contrast the rotation in simple shear, for example, 
does not exceed 90° even if the magnitude of 
shear is infinite. Lines can never rotare across the 
simple shear direction. 

It is informative to consicler the movement 
partern in two other numerical exaroples which 
give camplex eigenvalues and thus closed partide 
paths. 

In the first of these exaroples we select Ex = 
0,75 ; y =  l and () = 45 ° .  The corresponding 
values for the coefficients etc. are 
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(a) x =  [ cos (0,433t) + 0,57737  sin(0,433t) ]x0 + 
+ 1 , 1 547 sin(0,433t)y0, 

( 54) 
(b) y = - 1,1 547 sin ( 0,433t)x0 + 

+ [ cos (0 ,433t) - 0,5 7737 sin (0,433t) bo· 
These equations describe partide paths belonging 
to a family of concentric and geometrically similar 
ellipses whose lon g axis makes an angle 1 3  5 °  
with the positive x axis (Fig. 5 ) .  Though this set 
of partide path ellipses slope in the opposite 
direction of the ones above, the sense of rotation 
of the particles is the same, namely with the 
dock. 

A special situation occurs at the following earn­
bination of simple shear and pure shear : 

ix = 0,5 ; y =  l ;  () = 45 ° .  

From these data one obtains 

al l = O; a12 = 0,5 ; a2 1 = - 0,5 ; 
a2 2  = O  and x; = ± 0,5 i  = (Ji. 

al l = 0,2 5 ; a12 = 0,5 ; a2 1 = - 0,5 ; a2 2  = - 0,2 5 .  Introduced into the particle-path equation these 

x; = ±Y 0,75 2 - 0,75 = ± 
± iY 0 ,1875 = ± 0,433i = ± (Ji. 

The camplex eigenvalues are identical to those 
obtained in the previous example, but since ix is 
different the equations controlling the partide 
path become slightly different, viz. ( see also the 
general formula, eq. ( 5 2 ) ) :  

data yield 

( 5 5 )  
(a) x =  cos (0,5t)x0 + sin(0,5t)y0, 

(b) y = - sin(0,5t)x0 + cos (0,5t)y0• 

These are the equations for rigid rotation without 
any strain. That is, the partide paths eonsritute 
a family of concentric circles. The velacity on any 
given circle is eonstant bur it increases proportio­
nal to the distance from the center. 

W e shall now turn to the behavior of the strain 
ellipse in the three cases above with camplex 
eigenvalues of the matrix in the rate-of-deforma­
tion equation. 

Purting the equations for the partide path (eqs. 
( 5 2 ) ,  ( 5 3 ) ,  ( 54) and ( 5 5 ) )  in the general form 

( a) x =  Ax0 + By0, 
( 56 )  

(b) y =Dx0 + Ey0• 

and going through the procedure of transforming 
the original circle to the strain ellipse expressed 
in matrix form, eq. ( 5 7 ) ,  we obtain farmula 
( 5 8) for the eigenvalues. 

( 57 )  r D 2 + E2 

(AE- BD) 2 
(x y) 

BE+ AD 
l-

(AE- BD) 2 

BE+ AD 
l r l (AE- BD) 2 j l x 

= l, 
A 2B 2 l l 

(AE- BD) 2 y J 
Fig. 5. Partide path analogous to the one shown in ( 5 8) 
Fig. 4, hut here the result of a different combination 

A.; = i [ (A 2 + B 2 + D2 + E2) ± 
±Y (A2- E2) 2 + 4(BE+ AD) 2] . of pure shear and simple shear. See text. 
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t=l 

Fig. 6. Strain ellipse shown at t =  l, 4, 6 and 7,26 units 
of time when the combination of pure shear and simple 
shear is as in Fig. 4. Stipled curves indicate circum­
ference of initial circle to which the strain ellipse will 
also return repeatedly at t =  n X 7,26 units of time. 
See text and Fig. 4. 

Expressian ( 5 8) is simpler than the one used 
previously (eq. (47 ) )  because for the three cases 
now under discussion AE- BD = l and B = 
- D. 

For the case Ex = 0,2 5 ,  y =  l , () = 45 ° we 
find 

A =  cos (0,43 3t) - 0,57737  sin(0,433t) , 
B =  1 , 1 547 sin(0,433t) , 
D =  - 1 , 1 547 sin(0,433t) , 
E = cos (0,433t) + 0,5 773  7 sin (0,43 3t). 

Inserted inta expression ( 5 8) these coefficients 
give 21 and 22 as functions of time. 

Based on the formulas for the length of the 
axes, v1z. : 

and for their slope 

we can obtain numerical values for the axial slope 
and the axial ratio at selected times during the 
progressive deformation. 

Figure 6 refers to the combination ix =  0,2 5 ,  
y =  l , () = 45 ° ,  and fig. 7 to  the combination 
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ix =  0,75 ,  y =  l, () = 45 ° .  The only difference 
between the two cases is in the formulas for 
A and E. In the ix = 0,7 5 -case 

A = cos (0,433t) + 0,5 7737 sin (0,43 3t) , 
and 

E = cos (0,433t) - 0,5 773 7 sin (0,43 3t) 

which differ from the values of A and E noted 
above. The plats in Figs. 6, 7, 8 ,  and 9 give the 
Iength and oriemation of the principal strain 
axes as functions of time. 

For the combination ix =  0,5 , y =  l , () = 45°  
the coefficients are 

A =  cos (0,5t) ; B = sin(0 ,5t) ; D =  - sin(0,5 t) ; 
E = cos (0,5t) . 

Put into the matrix form of the ellipse, the latter 
coefficients give 

( 59) (x y) r l 

LO 
OJ r x ] = 1. 
l l y 

The coefficient matrix of eq. ( 59) has two coin­
cident eigenvalues equal to unity. Furthermore the 

I f h 
. l . 1 - 1 o h" h s ope o t e ax1s, y x, 1s �

0
- = 0w JC means 

that the axial orientation is indeterminate. W e 
also nate that the symbol for time has vanished 
for the strain ellipse equation which in fact has 
degenerared to the equation in matrix form of 

Fig. 7. Strain ellipse shown at t =  l, 2,  6 and 7,26 units 
of time when the combination of pure shear and simple 
shear is as in Fig. 5. Stipled curves indicate circum­
ference of initial circle to which the strain ellipse returns 
periodical!y after n X 7,26 units of time. See text and 
Fig. 5 .  
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x 

Fig. 8. Dumbbell-shaped pattern showing the orientation and length of the strain ellipse axes 
at t =  O, l, 2, 3 etc. time units after the commencement of deformation. The radius of the 
initial circle equals the length cut off the y and x by the dumbbell-shaped curve. The radii 
marked t =  O, t =  l, 2 etc. and l', 2 '  etc. mark the position and length of the principle axes 
of the strain ellipse at t =  l, 2, 3 etc. time units. The figure is to understand such that the rad ii 
with primed numbers coincide with the one principle axis and the unprimed radii coincide with 
the other axis. At t = 3 time units, for example, the Iong axis of the strain ellipse coincides 
with the radius marked 3 and the short axis falls on the radius marked 3' .  Campare also Fig. 6. 

a circle whose radius does not change with time. 
However, the linear transformation ( 5 5 )  which 
applies to the last example shows that the system 
undergoes a rigid rotation. 

V anishin g eigenvalues of the matrix of the rate­
of-displacement equation: straight-line particle 
paths. The eigenvalues of the matrix of 
the rate-of-displacement equation ( 30) vanish 
when t:; = 2ixysinfJcos(J as noted on p. 4 1 ;  that 
is when Ex =  O and when Ex =  2ysinfJcosfJ .  The 
case Ex =  O is trivial. lt implies that the only 
deformation is the simple shear y in the direction 
e. The case ix =  2ysinfJcosfJ is, however, worth 
some comments. For numerical demonstration we 
select (J =  45°  and y = l as in the above examp-

les. To satisfy the condition ix =  2ysinfJcosfJ we 
must then giv e ix the value l ( since sin45 °cos45 ° 
= 0,5 ) .  

When the eigenvalues vanish for the above­
mentioned matrix it can be shown that the solu­
tion to the rate-of-displacement equation ( 30) 
assumes the simple linear form (60) 

(a) 
(60) 

(b) 

In these equations the eonstants c1 2 =x0 and 
Cz z  = Yo· This is readily found by purting t = O, 
and x and y equal to X0 and Ya respectively. As 
usual x0 and Yo are the initial coordinates. To 
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Fig. 9 .  Dumbbell-shaped partern g1vmg the length and orientation o f  the principal axes of 
the strain ellipse at t =  O, l, 2 etc. time units after commencement of deformation. The radius 
of the initial circle is equal to the length cut off the y and x axis by the dumbbell-shaped curve. 
For explanation see Fig. 8. Campare also Fig. 7. 

determine c1 1  and c2 1 we differentiate with re­
spect to t and obtain 

X =  Ct l > 
Y = c2 1 · 

These expressions must also equal 

(a) (r� - y0sin0cosO)x0 + ( ycos 20)y0 

(61 )  and 

(b) ( - ysin 20)x0 + (i y + ysinOcosO)y0 ,  

respectively, at time zero, see eq. ( 30) . 
Hence all four coefficients are determined, and 

eqs. ( 60) read 

(a) 
(62) 

(b) 

x = [ ( ix - ysin0cosO)x0 + (ycos 20)y0] t + x0, 

y = [ ( i  y + ysin0cosO )y0 - ( y sin 20)x0] t + Y o ·  

lntroduction of the selecred numerical quantities 
fn y, O and rearrangement yield 

(a) x =  ( l + !t)x0 + hy0, 

(63) 

(b) y = - !tx0 + ( 1 - !t)y0, 

in which we also have taken the condition for 
incompressibility, ix = - i  y, inta account. A srudy 
of the above equations reveals that they represent 
simple shear paraHel to a direction that makes 
1 3 5 °  with the x axis ( O ' = 1 3 5 °) (Fig. 1 0 ) .  The 
shear strain is positive. In other words, the com­
posite result of a simultaneous superposition of 
pure shear and simple shear of the magnirudes 
and relative orientation as selecred in the present 
example is actually a new simple shear in a 
direction which is normal to the original direction 
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t =  3 

t = 2  
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y 

t = O 

x 

t = O 

t = 3  

Fig. 10. Partide path (the Iines from t =  O to t =  3 )  of two points, initially at t =  O, generated 
during combined pure shear and simple shear. For the relative magnitude and orientation of the 
two rypes of strain necessary to give the straight partide path see text. 

and with a shear-strain rate equal to the original 
rate. In pure shear we know from general strain 
theory that the maximal shear-strain rate, Yrnax' 
in directions that bisects the x and y axes is nume­
rically twice as !arge as the principal strain rates, 
ix and fy · ( ] Ymax l = l 2ix J ) .  This is shown in Fig. 
llA. When now a simple shear of magnitude 

j y. l = l ix l is superiroposed in a direction which 
makes 45 ° with the positive x ax is the effect is 
that the shear-strain rates which are associated with 
the pure shear are reduced to half their original 
values. This is shown in Fig. llB. 

If we wish to obtain the equation for the 
strain ellipse corresponding to the deformation 
under study we fol!ow the previously prescribed 
procedure. That is, we firstly solv e eqs. ( 63) for 
the initial coordinates, thus 

(a) 

(64) 
(b) 

X0 = ( l - h)x-!ty, 

Y o = !tx+ (l+ !t) y, 
and insert these expressions for X0 and Yo into the 

equation for the initial circle with unit radius 
and center in origin. This procedure gives the 
strain ellipse equation 

(65) ( it2-t+ l)x2 + t2xy+ ( it2 +t+ l)y2 =l, 

whose matrix form is [ ( !t2-t+l) tf2 l ! x l  
(66) (x y) j l  j = l . if2 0t2+t+l) L Y 
The eigenvalues of the coefficient matrix of eq. 
(66) are 

( 67) 2i = !t2 +l±!\' 4t2 + t4 . 
Applying the formulas 

(a) 

(68) 
(b) 

and 

l l rl = -- r2 =--Y 2 1 ' VT.; '  

tg<P1 =
Y l = !t2-t+_l=A.l 
x l - !f2 

Yz !12-t+l-22 tg<P2 = - = -----­-!12 x2 
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j,Ey 

' � 
� p 

� ' 
,E. y 

A 

B 
Fig. I l. Direction and sense for maximum instantaneous 
shear strain in the case of pure shear (A) and the case 
of combined pure shear and simple shear (B) . See also 
text. 

we find how the length and the slope of the axes 
of the strain change with time as the deformation 
proceeds. 
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The three-dimensional case 
Sequential superposition of irrotational strain in 
three dimensions and simple shear 
Irrotational finite strain in three dimensions of 
an incompressible substance can be described by 
the linear transformation ( 69) shown below provi­
ded that the axes of principal strain coincide with 
the coordinate axes. 

Here x0, y0, Z0 are the initial coordinates, x, y, z 
the final coordinates and Ex, Ey, Ez the finite prin­
cipal strains. The incompressibility of the material 
requires that ( l + t:x) ( l + t:y) ( l  + t:z) = l . 

A rotational part of the deformation can be 
introduced by adding simple shear to the three­
dimensional irrotational strain. If we are free to 
determine the magnitude and the orientation of 
the simple shear relative to the x, y, z axe3 then 
the combination : three-dimensional irrotational 
strain and simple shear allows us to describe 
mathematically most - if not all - kinds of 
homogeneous three-dimensional strain of incom­
pressible substances. The said combination is 
therefore of particular significance for the smdy 
of deformed rocks. 

Simple shear strain of magnirude y paraHel to 
x', the plane x', y' being the slip plane, in an 
orthogonal coordinate system x', y', z' can be de­
scribed by the linear transformation (70) 

(70) 

rx' l r l 
y' j =  l o 

L z' l O 

o 
l 

o 
Equation (70) describes a transformation in which 
there is no displacements paraHel to y' and z' 
while the disp�acement in the x' direction increases 
with increasing distance from the x', y' plane. In 
order words, we have simple shear paraHel to the 
x' axis. The motion may also be called laminar 
flow along x', the x', y' plane being paraHel to the 
laminae which also coincide with the simple shear 
plane. 

W e have prim ed the coordinate system for the 
simple shear to distinguish it from the system 
used for the irrotational strain because the twn 
coordinate systems need not be paraHel when we 
combine the two kinds of deformation. lt is now 
possib�e to add to the irrotational strain a :;imple 
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shear o f  any magnitude and with any orientation angle 8 1 2  (with cosine o1 2 ) with the y axis and 
of shear plane and shear direction simply by an angle 8 1 3 (with cosine o1 3 )  with the z axis. 
placing the axial system x', y' , z' of eq. (70) in The shear plane is normal to the z' axis, the latter 
the appropriate orientation relative to the system making the ang:es 83 1 . 83 2 and 83 3  with cosines 
x, y, z of eq. (69) . In order to combine the two o3 1 , o3 2 and o 3 3 , respectively, with the x avis, 
kinds of deformation we must transfer the co- the y axis and the z axis. 
ordinates of both transformations to a common W e wish to express explicitly the final coordi-
coordinate system. We choose the x, y, z system nates of a displaced partide in terms of the initial 
of the irrotational strain as the common one; coordinates, the magnitude of finite simple shear 
hence it only becomes necessary to transfer the and the orientation of the shear plane and shear 
coordinates in the x', y' , z' system used for the direction, i.e. the direction msines. To this end 
simple shear inta the x, y, z system. we firstly perform the matrix multiplication on 

The transformation of mordinates to points the right-hand side of eq. ( 72 ) .  This proce::lure 
fixed in s pace between two orthaganal coordinate leads to eq. ( 73 )  
systems which are rotated in  relation to  one  an-
other about a common fixed origin, are given r Ol l  0 1 2  0 1 3 1 rXr l by eq. ( 7 1 )  which contains the matrix of direction 
cosines. (73 )  02 1 0 2 2  02 3 Yr = rx' l [ cos (x'x) cos (x'y) cos(x'z) l r x l L o3 1 03 2 0 3 3  l zr 
( 7 1 )  y' = COS (y'x) COS (y'y) cos (y'z) j y J · - [ (o l l + 03 1 f') ( 01 2 + 03 2 f') (0 1 3 + 03 3 /') jl r Xor j� , , ) , ) , l - 0? 1 02 ? 0 ? 3  Yor · l z cos (z x cos (z y cos (z z) L z - - -

Here (x'x) , (x'y) and (x'z) are the angles between °3 1 03 2 0 3 3  LZor 
the x' axis and the axes x, y and z respectively. 
(y'x) , (y'y) and (y'z) are the angles between the 
y' axis and the axes x, y and z, while (z'x) , (z'y) 
and (z' z) are the angles between the axis z' and 
the x-, y- and z axes respectively. The square 

In eq. ( 73 )  X0y, Y or and Z0r ma y be re gard ed as 
the independent variables and Xr, Yr and Zr as the 
dependent variables. The solution with respeec 
to the latter are expressed in eq. ( 74) 

matrix in eq. ( 7 1 )  is the matrix of direction msi- (74) 
nes also called the rotation matrix in three dimen­
sions. If we wish to transform the simple shear 
as expressed in the x', y' , z' system inta the x, y, z 
system we must change both the initial mordinates 
and the final coordinates by means of the rota­
tion matrix. Expressed in the x, y, z system the 
equation for the simple shear consequently be-

(a) al l  o 1 2  0 1 3 a1 2 0 1 2  0 1 3  la1 3 0 1 2 0 1 3 1 
Xy = 02 1 02 2 02 3 X"or + 02 2  02 2 02 3 Yor + lo2 3 02 2 02 3

1

Zon 
03 1  03 2 03 3 03 2 03 2 0 3 3  03 3  o3 2 os ;; 

comes 

(72 )  

= r: L O  

r J, o, J, 1 r x, 1 02 1 02 2 02 3 Yr = 

L o3 1  03 2 03 3 L zr 
o , l r J, o,,, l r x,

, 

l o b Ön b l '" j . 
o l l o3 1 03 2 03 3  l zar 

In this expression [oiJ is the rotation matrix 
expressed samewhat more conveniently than in 
eq. ( 7 1 ) . X0r, y0y, Z0y, Xy, Yr and Zr are the initial 
and the final mordinates respectively, in the x, y, z 
system of particles displaced by simple shear of 
magnitude y in a direction x' which makes an 
angle 8 l l  (with cosine o 1 1 )  with the x axis, an 

(b) ol l  al l  0 1 3  o l l  a1 2  0 1 3 o l l  a1 3  0 1 3  
Yr = 02 1 02 1 02 3 X or + 02 1 02 2 02 3 Y or + 02 1 02 3 02 3 

03 1  03 1 03 3  03 1 03 2 03 3  03 1 03 3 03 3  

(c) ol l  0 1 2  al l l ol l  0 1 2  a1 2  ol l  0 1 2  a1 3 
z, = 02 1 02 2 02 1 Xor + 02 1 0 2 2  02 2 Y or +  02 1 0 2 2  02 3 

03 1  03 2 03 1 03 1  03 2 03 2 03 1 03 2 03 3  
In eq. ( 74) al l = ol l  + o3 1 y ; a1 2  . 0 1 2 + 03 2 /'  
and a1 3 _ o1 3 + o3 3 /'·  

The straight vertical lines on either side of the 
array of direction cosines in eqs. ( 74) signify deter­
minants. The solution for Xy, Yr and Zr follows 
from the application of Cramer's rule ( see e.g. 
Hadley 1965) on eq. ( 73 )  w hen the fact that the 

2on 

Z or· 
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determinant to the matrix of direction cosines is 
unity is also considered (see e.g. Jaeger 1966) . 

For the benefit of the continued computation 
eqs. (74) are pur in matrix form, thus : [Xr l rA1 1 A1 2 A1 3 I r x0, 1 Yr = A2 1 A2 2 A2 3 j 1 Yor j · 

Zr lA: n A3 2 A 3 3  l zor ( 7 5 )  

Al l  etc. i n  eq. ( 7 5 )  earrespond to the determinants 

al l 0 1 2 o 1 3  
02 1 0 2 2  02 3 
Os 1  03 2 0 3 3  

etc. m eqs ( 74) . 

It is also possible to develop an equation identical 
to ( 7 5 )  by making  use of the condition that the inverse 
of the rotation matrix, [<5ii] ,  equals its transpose, [oii ] * .  
Equation (72)  then takes the form: 

r xy ] I l o )' l r x or l 
l Yr = [ou] * I O l o j [oii]

l
y0, j -

l z r l 0 0 l l z OY 
Here the product of the three square matrices 0:1 the 
right-har.d-side of the equation is identical to t:.e matrix 
[Aii ] in eq. ( 7 5 ) .  

Equation ( 7 5 )  describes the displacement of 
particles in the x, y, z coordinate system when the 
shear direction and the shear plane of simple 
shear are inclined to the coordinate axes, the in­
clination been given by the magnitude of the 
elements in the matrix of direction cosines. 

Bull. geol. lost. Univ. Uppsala, N. S .  6 (1971J) 

Matrix multiplication furnishes the total trans­
formation from the initial coordinates of particles 
to their final coordinates after both the irrotational 
deformation and the simple shear have been per­
formed. The result is presenred in eq. (79) . 

l x, ] l Yr = 

l zr 

( 79) rA1 1 c r + cx> A 1 2 c r + cy) A 1 s C I + cz) l rxc, 1 
=

l 
A2 1 C I + cJ A2 2 C I + cy) A2 3 ( 1 + cz) j Ycc j . 

l As 1 C 1 + ex) A3 2 ( I + cy) A3 3 ( l + cz) l z0, 

Case (2) : Simple shear precedes irrotational strain. 
- Now the final coordinates produced by the 
simple shear function as the initial coordinates to 
particles subsequently displaced in the irrotatio­
nal strain. W e therefore p ut 

(80) [x0, Y o <  Z0,] = [x r Yr Z1] 
and obtain the consequent earobination of eqs . 
( 7 5 )  and ( 76) , viz. Now, in the same coordinate system an irrota­

tional strain with principal strains paraHel to the 
coordinr:: l axesr t: :::�ri�ed by e�. ( 76) 

l r X o, ] (S l ) 
[_ :: jl = 

(76) y, j = O ( l + cy) O j Yoe . • 

l z, l O O ( I + cz) l Zo, r ( l + tx) O O l rA1 1 A1 2 A1 3 I rx0r l 

Assume that the irrotational strain and the rota- = O ( l + E y) O j A2 1  A2 2  A2 3 j Y or j · 
tional si� p le sh ear are sup�rimpose� i� different l 0 0 ( l + E ) l A .. 1 A - 9 A:n L z 
orders, vtz. case ( l ) : Irrotattonal stram ts followed z '-' 3 - • • or 
by simple shear, and case (2 ) : Simple shear prece- Carrying out the matrix multiplication we obtain 
des irrotational strain. eq. (82)  

C ase (l ) :  lrrotational strain precedes simple 
shear. - In this case the final coordinates to a 
partide after the irrotational deformation func­
tion as the initial coordinates to the same partide 
for the subsequent simple shear, hence we have 
(77)  [x or Y or Z or J = [x, y, z,] . 

The consequent earobination of eqs. ( 7 5 )  and 
(76) leads to eq. ( 78 ) .  

( 82 )  
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Since nor all the three principal srrains can 
be equal for incompressible media such as many 
rocks the equation systems (79) and (82 ) are not 
idenrical. The rwo equation systems accordingly 
show quanritatively how the composire deforma­
tion depends upon the order of superposition. 

To obtain an equation for the finite srrain 
ellipsoid we must solve eqs. (79) or ( 82 ) with 
respect to the initial coordinates x0, Yo and z0 such 
that the latter become expressed in terms of the 
finite coordinares. Inserrian of the thus formed 
expression for x0, Yo and z0 inro the equation for 
the initial sphere gives the equarion for the finite 
strain ellipsoid. 

Inversion of the marrix in eqs. ( 79) or (82 ) 
furnishes the sought expressions for x0, Yo and 
Z o · 

ler us note the elements in the inverted matrix 
by B and indicate the initial and final coordinates 
by the subscriprs o and by no subscript re­
specrively. 

Then we have 

where B;i cofw:1 - 1 , cofn be in g the cofactor to 
the element in the ji position in the marrix of eqs. 
( 79) or (82 ) ( depending on w hi ch order of super­
position we have selected) ,  and L1 the determinant 
of the same matrix. Incidenrally, for incompressib�e 
substances the producr ( l + .sx) C l + .sy) ( l + .sz) is 
uniry such rhat the determinant of the coefficienr 
matrices of both eqs. ( 79) and (82 ) reduce to 

Au A1 2 A1 3 

A3 1 A3 2 A3 3 
An initial sphere with unit radius and ce::uer in 

origin is described by eq. (84) 

( 84) 

in which we inrroduce x0 etc. by their expressions 
given in eq. (83 ) ,  and obtain : 

( 85 )  

(B i l + B� l + B� l )x2 + (Bi 2 + B � 2 + B � 2 )y 2 + 
+ (Bi s+ B� s + B � 3 )z2 + 
+ 2 (BuB1 2 + B2 1B2 2 + B3 1B3 2 )xy + 
+ 2 (BuB1 3 + B2 1B2 3 + Bs lBs s )xz+ 
+ 2 (B1 2B1 3 + B2 2B2 3 + Bs 2B3 3 )yz = l ,  
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or more simply : 

(86) ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz =  l .  
The latter two equations describe an ellipsoid with 
center at origin and axes inclined to the coordinate 
systems. 

In order to determine the length and orienration 
of the axes of the ellipsoid we follow a procedure 
similar to the eigenvalue method used in the 
two-dimensional case, pp. 39 ff. Firstly the equa­
tion for the ellipsoid is pur in matrix form: 

r a d e ] r x l  

(87) (x y z) l d b f y j . 
e f c l z 

Here the elements a, b etc. are defined by the 
idenry berween eq. ( 8 5 ) ,  eq. (86) and eq. (87 ) .  

Similarly a s  was done i n  the two-dimensional 
case the orienrations of the ellipsoid axes in the 
three-dimensional system and the axial lengths 
can be derermined by the eigenvalues of the 
coefficienrs matrix in eq. (87)  see e.g. Efimov 
( 1966) . The len g rh of the axes are 

(88) 
l l l 

rl = -- ; r2 = --; rs = -- ; 
"Y },l "Y .Jc2 "Y ?.3 

where },; are the three eigenvalues of the 3 X 3 
matrix in eq. (87 ) .  The eigenvectors which belong 
to the eigenvalues of the matrix coincide with the 
axes. These are convenrional methods of analytical 
geometry and need not be verified in this accounr. 

It is unforrunate that the equations which 
finally give us the shape and orientation of the 
strain ellipsoid viz. eqs. ( 8 5 ) ,  (86) and (87)  have 
quite cumbersame coefficients. These coefficienrs 
are the results of rather lengthy mathematical 
operations performed on the input data. The latter 
consist of t:;, y and the three independent angles 
O ; needed to orient the simple shear direcrion and 
the simple shear plane in the coordinate system 
whose axes by choice coincide with the principal 
strains of the irrotational part of the composite 
deformation. The three angles menrioned are 
implied in the matrix of the nine direction cosines 
only three of which, however, are independent ; 
see Jaeger 1966. 

In view of the camplexity of the coefficients of 
the strain-ellipsoid equation in the general case 
we shall select a special case with considerably 
simplified coefficienrs when. we now present nu­
merical examples. 

In this special case the simple-shear plane coin­
cides with the x, y plane bur the shear direction 
is inclined to the x- and y axes (Fig. 1 2 ) . This 
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z and Z1 

y l  

... ..... 7!'1 - x 
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which is valid when simple shear overprims irro­
tational strain. Transformation (82)  takes the 
form (92 ) when the conditions for the special 
case are considered. 

(92) y, = O ( l + fy) ( l + fy) ysm() Y or l .  r X, ] r ( l + fx) 0 ( l + fx )yc�s() ] rX0y l 
L z, L O O ( l + fz) L Z0y j 

Equation (92) is accordingly valid when simple 
shear preeecles irrotational strain. 

X As a numerical example we select the finite 

Fig. 1 2. Two orthogonal coordinate systems whose axes 
z and z' coincide and whose axes x and x', and y and 
y' respectively deviate by an angle (). 

strains and the shear direction noted below. 
( l + fx) = 2 ; ( l + fy) = 0,91 ; ( l + fz) = O,S S ;  
y = 3 ,5 ;  () = 60. 

Note that ( l + fx) C l + fy) ( l + fz) = 1 ,00 1 which 
means that the material is practically incom­
pressible. 

For the case that simple shear follows irrotatio­
nal strain the selected parameters yield the trans­
formation (93)  

orientation of the shear plane reduces the matrix y 
of direction cosines to B 

(89) 

[ cos() : sin() 

o 

sin() 

c os() 

where () is the angle between the shear direction 
and the x axis. That the element a3 3 is unity in 
this rotation matrix signifies that the z- and the z' 
axes coincide. A consequence of the present special 
combination of the two strains is that the matrix 
[Aii] in eqs. ( 7 5 ) ,  (78) and (8 1 ) is quite simple. 
Inspection of eq. (74) , in which the consequence 
of the rotation matrix is shown by expansion, 
reveals that the present version of the matrix [Aii] 
is 

r � � :::: l '  L O  O l 

(90) 

remembering that the determinants of the matrix 
of direction cosines is unity. 

This in its turn ref!ects on the two transforma­
tions ( 79) and (82)  valid for the composite de­
formation with the two contrasted orders of 
superposition. Transformation (79) is now of the 
form (91 )  

IXy ] r ( l + fx) O ( l + fz) yc�sO i rxo, l 
(91 )  l Yr = O ( l + fy) ( l + f2 ) ysm() j Y c< j , 

L zr L O O ( l + fz) L Z0, 

A 

1 3  A 

o c f x 

1 3  B 
y z l / -l - ---� .,;':�- - - - - - - -_- -- - - � 

x 

Fig. 1 3. Deformation of a cube in sequential superpo­
sition of 3 -dimensional irrotational strain and simple 
shear of the kind explained in the text. 13A seen along 
the z axis toward the origin .  a b c o are corners of 
the initial cube. d e f o are the corners of the base of 
the deformed cube. A is the top of the cube after de­
formation in the sequence irrotational strain -+ simple 
shear. B is the top of the deformed cube after defor­
mation in the sequence, simple shear -+ irrotational 
strain. 13B shows profiles of the deformed cube in the 
planes z, y and z, x. 
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Fig. 14 .  The cube and its deformed versions as illustrated in Fig. 13 here shown m three 
dimensions. 

(93) 

0.9625 1 rX0, j 
1 ,667 1 

1 

y0, . 
0,55  L Z0, 

The deformation of a cube with corners initially 
at the points (000) ,  ( 1 00) ,  (0 10) ,  (00 1 ) ,  ( 10 1 ) ,  
(0 1 1 ) ,  ( 1 1 0) ,  ( 1 1 1 ) according to transformation 
(93) is demonstrated in Figs. 1 3  and 14 .  

If simple shear preeecles irrotational strain the 
transformation assumes the form ( 94) 

(94) 

3,5 l rXoy l 2 ,758 l Yor . 
0,5 5 L zoy 

A cube of the initial shape and orientation de­
scribed above will now change to the shape shown 
in Figs. 1 3  and 14.  

For the determination of the strain ellipsoid 
in the special case with the simplified matrix of 
direction cosines we firstly need to invert the 
matrices of eqs. ( 9 1 )  and ( 92 )  in order to obtain 
explicit expressions for x0, Yo and z0• The results 
are given in eqs. (95 )  and (96) . 

Equation (95)  is valid when irrotational strain 
preeecles simple shear while eq. (96) holds for 
reverse sequence of superposition. 

Introduction of these expressions for X0 , Yo and 
z0 into the equation for the initial sphere furnishes 
the sought equation for the strain ellipsoid, viz . :  

(97)  ax2 + by 2 + cz2 + 2dxy + 2exz+ 2fyz =  l 

(see eqs. (85 )  and ( 86) . 

The coefficients a, b, c etc. in eq. (97) are func­
tions of the elements in the coefficient matrices 
either of eq. (95 )  or of eq. (96) , depending upon 
the order of superposition. For the sequence: 
irrotational strain -+ simple shear the coefficients 
are as follows 

a1 = (l+ t: x} - 2 = 0,2 5 00, 
b l = (l + E y) - 2 = 1 ,207584, 
c1 = ( l + t:x) - 2y 2cos 2B + (l + t:  y) - 2y 2sin 2 (;l  = 

= 1 5 , 1 6608 5 ,  
d l  = 0, 
e1 = - ( 1 + t:x) - 2ycosB = - 0,437 5 ,  
f1 = - (l + t:y) - 2ysin8 = - 3,6602933 .  

The numerical values of the coefficients follow 

r x,l r ( ! + ,,) 

' 

o - (l h J - 'r'"'o l r:J (95 ) Yo• - O (l+ t:y) - 1 - ( l + t:y) - lysinB 

l z0, l O o (l + t:z) - 1 

(96) Yor = l O 
rx" l r o + ,,

) ' 

l zor l O 

o 
(l+ cy) - 1 

o 

_ (l h,) _ 'Y'"'' 1 r x. 1 - ( lh,) - ' y,inO j y, . 
(l + t:z) - l L z, 
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from the values selected for e, y and (} in our 
example specified on p. 42 .  

When the equation for the ellipsoid is put in 
matrix form (see eq. ( 87) ) the characteristic equa­
tion which furnishes the eigenvalues is of the 
form 

(98) 2 3 - (a+ b + c)P + (ab + ac+ bc- d2 - e2 - f2 ) J. + 
+af2 + be 2 + cd2 - abc- 2def = O. 

With the numerical values of a1 , b 1 , c1 etc m­
serted, the characteristic equation becomes 

(99) 2 3 - 16,6242 2 + 8,8 1862 - 0,9980 = O, 
whose three roots are ( for the solution of cubic 
equations see for example Nagell 1 962 , p. 185 ) 

21 = 16,0630; },2 = 0, 1 624; 23 = 0,3822 . 
According to the relationship between axial length 
and eigenvalues ( see p. 40) the lengths of the 
axes of the strain ellipsoid are: 

l l rl = � = 0,2495 1 ; r2 = � = 2,48 145 ; 
y 21 y Å2 

l r3 = -- = 1 ,617565 .  
y }.3  

Since the initial sphere has unit radius and the 
materials are treared as incompressible the product 
r1 r2 r3 should be unity. It is actually 1 ,00 1 5 . 

The axes of the strain ellipsoid coincide with 
the eigenvectors that belong to the three eigen­
values . W e accordingly extract the eigenvectors 
and find the following values for the relative 
components to the eigenvectors 

x1 = l ; y1 = 8,9057 ; z1 = - 36, 1439 f01 
eigenvector rl > 

x2 = l ;  Y2 = 0,70 1 2 ; z2 = 0,2002 for 
eigenvector r2 and 

x3 = l ; Y3 = - 1 ,3 399; z3 = - 0,302 1 for 
eigenvector r3 . 

Only the relative values of the eigenvector com­
ponents are given, based on the x component ar­
bitrarily put equal to unity. The absolute lengths 
of the principal strain axes are determined above. 

For comparison we consicler also numerically 
the result of the opposite order of superposition 
of the same two kinds of strain. In this case some 
of the coefficients in the equation for the strain 
ellipsoid assume different forms and different 
magnitudes. As a consequence of the numerical 
values of the elements in the square matrix of 
eq. (96) the coefficients in the equation for the 
strain ellipsoid assume the values 
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a2 = ( l + Ex) - 2 = 0,2 500, 
b2 = ( l + fy) - 2 = 1 ,2076, 
c2 = ( l + cz) - 2 (y 2cos 20 + y 2sin 20 + l ) = 

= ( l + c  z) - 2 (y 2 + l ) = 43 ,801 7, 
d2 = 0, 
e2 = - ( l + Ex) - 1 ( 1  +E z) - 1ycos(} = - 1 ,5909, 
f2 = - ( l  + cy) - 1 ( 1 + cz) - lysin(} = - 6,0561 .  

Introduction of  these numerical coefficients into 
the general equation for the strain ellipsoid (eq. 
87) leads to the following characteristic equation 

( 100) ), 3 - 45 ,25922 2 + 24,9389}, - 0,9980 = o. 
The eigenvalues are accordingly found to be 

},1 = 44,70 1 8 ; 22 = 0,04344; 23 = 0,5 140, 
which determine the lengths of the axes, thus 

l r2 = -- = 4,7979; 
y 22 

l r3 = -- = 1 ,3948. 
y },3 

(The product r1 r2 r3 which theoretically should be 
unity is in fact 1 ,001 14) . The principal axes and 
the eigenvectors have the following relative com­
ponents, purting arbitrarily the x component equal 
to unity: 

x1 = l ; y1 = 3 ,890; z1 = - 27 ,941 for the 
ax1s r1 , 

x2 = l ;  Y2 = 0,675 5 ; z2 = 0,1 299 for the 
axis r2 and 

x3 = l ; y3 = - 1 ,449; z3 = - 0, 166 for the 
ax1s r3 . 

Simultaneous superpost/ton of three-dimensional 
strain: progressive deformation in three dimensions 

The simultaneous superposition of three-dimen­
sional irrotational strain and a rotation eaused by 
added simple shear can be treated similarly as 
the two-dimensional case, pp. 39 ff. For homo­
geneous irrotational deformation the rates of dis­
placement x, y and i are related to the rates of 
strain i:.o ty, Ez as follows 

( 1 0 1 ) r � 1 � ix � o 1 r x 1 y = l o fy o y 
. l 

l z l O O Ez l z 

provided that the coordinate axes coincide with 
the principal axes of strain. As usual the dor 
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above the symbols signifies differentiation with o 1 1 o 1 2  o3 1 y o 1 1 o 1 2  o3 2 y l o1 1 o 1 2  o 3 3 y 
respect to time. 

The rate of change of simple shear with dis- z = o2 1 o2 2 O x+ 02 1 02 2 O 

l

y +  02 1 02 2 O z. 
placement in the x' direction wirhin the shear 
plane y', z' is related to the rates of displace�nent 03 1 03 2 O 03 1 01! 2 O O; n 03 2 O 
of the coordinates in three dimensions as shown 
bel o w 

( 102) 

The axes x', y', z' are generally inclined to the 
axes x, y, z. If we wish to combine the two kinds 
of deformation we must therefore either rotare 
one of the two coordinate systems into the other 
or rotare borh into a third common orientation 
without, of course, rotating the strains and 
displacements. W e choose to rotare the system 
x', y', z' into x, y, z. This means that both the vector 
x', y', z' and the vector x', j', z' must be operared 
on by the rotation matrix in order to express the 
simple shear deformation in terms of coordinates 
in the system x, y, z. The angles in the rotation 
matrix then indicate the orientation of both the 
direction and the plane of simple shear in relation 
to the axes x, y, z, the latter coinciding with the 
axes of principal strain in the irrotational part of 
the composite deformation. 

Application of the rotation matrix on x', j/, z' 
and on x', y', z' in eq. ( 1 02) leads to 

( 1 03) 
r 01 1 0 1 2  0 1 3 1 l � l 

02 1 0 2 2  02 3 ! y j= l 
-� s l . l ull 1 u3 2 0 3 3  l Z 

rl : : : 1 r :: : ::: ::: 1 r : lj . O O O l ås 1 os 2 03 3  L z 
where [å;J is the rotation matrix (see eq. ( 72 ) ) . 
We now solve eq. ( 1 03 ) with respect to the rates 
of displacement x etc. and find 

( 1 04) 
os 1 Y  0 1 2 oH o3 2 Y  0 1 2  å 1 3  l os s Y o 1 2  0 1 :1 

x =  O 0 2 2  o2 :l x+ O 0 2 2  o2 s y+
,

0

0 
02 2 o2 3 z, 

O 03 2 Os s  l O 03 2 ås s 03 2 Os s  

The solutions for x, y and .i expressed in eqs. 
( 1 04) follow from the application of Cramer's rule 
(Hadley 1965) on eq. ( 1 03 ) remembering that 
the determinant of the matrix of direction cosines 
[oii] is always unity, see Jaeger ( 1 966) . Inci­
demally, we follow the convenrian of denoting 
determinants by a straight vertical line on either 
side of the array of elements. 

A more convenient form of eqs. ( 104) is 

[:: 1 = r�: : �:: �: : 1 r:: 'J . Zy L A3 1 A3 2 A 3 3  l z, 
( 1 05 ) 

m which Aii represent the determinants 

Os 1 Y  0 1 2  0 1 3  
o 

o 

0 2 2  02 3 etc. m eqs. ( 1 04) . 

03 2 03 3  
Equation (105)  can also be developed from (103)  by 

using the transpose of the rotation matrix which for 
this particular matrix is equal to its inverse. Equatio:J. 
( 103 )  can then be written : r : lJ � [0;) ' r : : : J  [OA ; 1 

L Y L O O O l z  J 
The ''"'=''"" [O;; l ' r : : : l [bu] 

l O O O 
is identical to the matrix [Aii] in eq. (10 5 ) .  

If the rate of change of  shear a s  weil a s  the di­
recrion cosines are eonstant both in time and space 
we see that eqs. ( 1 04) or eq. ( 105 ) is in fact a 
sysrem of linear first order differential equa­
tions with eonstant coefficients. The same is true 
with eq. ( 10 1 ) provided that the strain rates 
ix, Ey and [2 are eonstant wirhin the region con­
sidered. Now the combined effect of the irrotatio­
nal strain and the simple shear is found by adding 
eq. ( 1 0 1 ) and eq. ( 1 05 ) , thus 

o1 1 o3 1 y o 1 3  o 1 1 o3 2 Y o1 3 ou å;; 3 y å U l  [ x l r (Au + i.J A1 2  A1 3  l r x l 
y = 02 1 O 02 3 x+ 02 1 O 02 3 y+ 02 1 O o2 a z, ( 106) y = A2 1 (A2 2  + i y) An j Y . 

03 1 O 0 3 3  03 1 O 0 3 3  03 1 O Oz ;; z lA3 1 As 2 (A3 3 + iz) l z 
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A system of differential equations of this kind 
has the solution 

( 107) r : l = r :: : :: : :: : l r :::::: :: 1 . l z L c3 1 c3 2 c3 3 L exp (x3 t) 
Here x; are the eigenvalues of the coefficient 
matrix in the sysrem of differential equations 
( 106) . If the three eigenvalues are distincr cii 
are eonstants while cii may be functions of t if the 
eigenvalues are coincident. 

During the continued discussion we shall select 
special cases which simplify considerably the 
computation of the progressive deformation which 
for the completely general case requires quite 
cumbersame mathematical operations. As the first 
simple example l et the z'- and z axes coincide and 
ler (} be the angle between x and x'. This means 
that x, y is the plane of simple shear and that 
the shear direction makes an angle (} with the x 
axis (Fig. 1 2 ) . In other words, the relative orien­
tation of the two simultaneausly superimposed 
strains is the same as in our example of sequential 
superposition. The here selected relative orienta­
tion earresponds to the rotation matrix ( 108) 

( 108) 

r cosO 

[oii] = - sinO 

sin(} 

cosO 

l o o 
When this rotation matrix is utilized to generate 
the elements Aii in eq. ( 10 5 )  and ( 1 06) we find 
that eq. ( 106) assumes the form 

( 109) 

r x l t ix o ycosO l r x l � = l O i Y �sin O j l y j . 
l z L O  O Ez L z 

The eigenvalues of the coefficient matrix in eq. 
( 109) are simply x1 = E�, x2 = Ey and X3 = E.z 
thus furnishing the integrated equation ( l l O) . 
Nate that in the present relative orientation of 
the simple shear and the irrotational strain all 
three eigenvalues are real. A consequence of this 
is that the displacements are exponenrial functions 
of the time. (Cases with comp�ex eigenvalues and 
hence periodic displacements will be treared later 
in this section.) 

( ! lO) r : 1 = r :: : :: : :: : jl r :::::::: j' . l z l c3 1 C3 2 c3 3 l exp (czt) 
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The eonstants en are partly determined by the 
initial coordinates x0, Yo and z0 of a partide whoöe 
displacements we wish to trace, partly by the 
eigenvectors that belong to the three eigenvalues. 
It can be shown that the following sets of eqU1-
tions determine c;i : 

cl l  + cl 2 + cl 3 = Xo, 

From these relationships we conclude 

c1 2 = O, c2 1 = O, c3 1 = O, c3 2 = O, c3 3 =z0, 
ycosO 
. . zo ; C1 3 = 
Ex - Ez 

ycosO 
• . Zm Ez - Ex 

ysinO ysin(} . . Zo ; C2 3 = -.--. - Zo· 
Ey - Ez Ez - Ey 

Accordingly the inregrated equations read : 

( l l 3)  

(a )  x = (xo + ycosO 

Ex - Ez 

(b) y = (Yo + 
y sin(} 

Ey - Ez 
(c) z = z0exp (i2t) . 

Z0) exp(ixt) + 

Z0) exp(iyt) + 

ycosO . 
. . zvexp (czt) , 
Ez - Ex 
ysin(} . . . z"exp (t2t) , 
Ez - Ey 

Let us selecr numerical values for i, y and (} 
which make this case of simultaneons strain super­
position comparable with a previous example on 
sequential superposition of irrotational three-di­
mensional strain and simple shear. For that ex­
ample we used 

C l + cx) = 2 ; ( l + cy) = 0,91 ; ( l + cz) = 0,5 5 ; 
y = 3,5 and (} = 60° 

( see p. 54) . 
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To make the rate of change of longitudinal 
strain in our present example comparable with 
the previous values for ( l + Ex) etc. we shall re:all 
the following relationship 

l . 
( l + t:) = -- = exp(ct) , 

la 

where l and la are the final and the initial lengths 
respectively. Hence the ratio between the strain 
rates which best campares with the above finite 
strains is 

E.x/iy/iz = ln( l  + t:x)/ln ( l  + cy)/ln ( l  + t:z) = 
= 0,693 1 5  l - 0,0943 1 1/ - 0,59784. 

With reference to the shear strain, however, we use 
r = 3,5 because the relationship between y and 
r is linear, viz . :  y = yt. () is the same as in the 
earlier example, viz. 60° .  

t =  o 
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Fig. 1 6. Two orthogonal coordinate systems whose axes 
y and y' coincide and whose axes x and x' and z and 
z' respectively deviate by an angle () . A plane containing 
the x' and y' or y axis is indicated . 

With these values of i, y and () inserred eqs. 
( 1 1 3 )  become 

x = (x a + 1 ,3 56za)exp(0,693t) ­
- 1 , 3 56z6exp( - 0,598t) , 

y = (Ya + 6,0 177za) exp( - 0,0943t) ­
- 6,0 177zaexp( - 0,598t) , 

z = Z0exp( - 0,598t) . 

Fig. 1 5  A, B illustrates the progressive defor­
mation of a cube with initial corners at (000) , 
( 1 00) ; ( 1 10) ; (010) ; (00 1 ) ; ( 1 0 1 ) ; ( 1 1 1 ) ; (0 1 1 ) .  
I t  i s  interesting t o  campare the shape o f  the cube 
at time = l with the deformed shapes after the 
two sequential superpositions, Figs. 1 3  and 14. At 
time t =  l the finite strains ( l + t:x) ,  ( l + t:y) ,  

z 

l._------!''---------,':------7---------,-x:-'74 ( l  + t:z) and y are the same as in the sequential 
superposition yet, the shape produced by the 
simultaneous superposition is different from either 

B 

y 
z 

of the two finite shapes produced by the two se­
quential superpositions of opposite order. 

We shall proceed with another relative orien­
tation of the simple shear and the irrotational 
strain. If the simple-shear plane is inclined to 
all three axial planes in the x, y, z system at the 
same time as the shear direction also deviates from 
the axial planes then we have the completely 
general case. This means that none of the elements 
in the rotation matrix varrishes ( though man y are 
identical since only three direction cosines in the 
three-dimensional rotation matrix are indepen­
dent) and the computation becomes more cumber­

...:::..----!-------:--"'-----+-----x-74 some than the added information probably war­

Fig. 15. Cube being deformed in simultaneous combi­
nation of 3 -dimensional irrotational strain and simple 
shear. A:  View along z axis toward origin. B: Profiles 
in the planes z, y and z, x. 

rants. However, if we maintain a shear plane 
that is inclined to the x, y plane but !et the shear 
direction lie in, say, the z, x plane (Fig. 16)  we 
will get some interesting composite strain geo-
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metries without making the calculations excessively 
complicated. The orientation specified rueans that 
the y'- and y axes coincide and that the axes x 
and x' and z and z' respectively, deviate from 
one another by an angle (). The prim ed coordinate 
axes refer to the simple shear in the manner defi­
ned by eq. ( 1 02 ) . The corresponding rotation 
matrix to apply in order to express the mordinates 
x', y', z' in terms of the coordinates x, y, z is now - r cos(J o sin() j 
( 1 14) [åjj] = o l o . 

l - sin() O cos() 
Using this rotation matrix in eq. ( 103) we obtain 
expressions for the elements An in eqs. ( 1 05 )  and 
( l  06) . The latter then is of the form: 

( 1 1 5 )  r ;  L 
l z j [ (c'x - ysin8cos0)  � 

== 0 Ey 

- ysin28 O 
The coefficient matrix in eq. ( 1 1 5 )  has the charac­
teristic equation 

Here A == ix +  iv + e2 == O  for incompressible ma­
terials to which. we limit the treatment in this 
paper, 

and 
C ==  (i2 - ix) iyysin()cos()-ixiys� . 

A cubic equation has generally three roats which 
may be real or complex. The previous earobina­
tion of irrotational strain and simple shear with 
the shear plane coinciding with the x, y plane 
produced only characteristic equations with real 
roats (i.e. real eigenvalues) .  The present combina­
tion of the two classes of strain with the simple 
shear plane at an angle to the x, y plane has, how­
ever, characteristic equations whose roats may be 
complex. That is to say the integrated form (eq. 
( 107) )  of the rate-of-displacement equation is 
sometimes periodic in the sense that the partide 
paths extend around the full 360° angle. 

W e sh all now consicler numerical earobinations 
of in i:y, i:2, y and 8 which give camplex eigen­
values. 
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To decide whether the roats of a cubic equation 
is real or camplex one studies the quantity 

D = ( � r  + ( �r 
(see e.g. Nagell 1 962 ) .  

Here B and C are the coefficients in eq. ( 1 16) 
in which the coefficient A vanishes. The latter 
circumstance is necessary for the following condi­
tians to be valid: 
( l )  When D < O all three roats are real and 

distinct. 
( 2 )  When D ==  O two roats are coincident and 

all roats are real. 
( 3 )  W hen D> O t here is on e real and two 

conjugate camplex roots. 

We shall focus our artentian on case ( 3 )  which 
implies periodic displacement of particles in the 
course of progressive deformation. Before, how­
ever, presenting earobinations of numerical values 
of ix, Ey, i:2, y and 8 that give camplex eigenvalues 
we nate that the integrated rate-of-displacement 
equation ( 1 07)  under such circumstances rakes the 
following general form: 

(a) x == cx1 exp(xlt) + 
+ (cx2cos({Jt) + Cx3 sin((Jt) ) exp(at) , 

( 1 17 )  (b) y == cy1exp(xlt)+ 

+ (cy2cos({Jt) + cy3 sin({Jt) ) exp(at) , 
(c) z == czlexp(x1t)+ 

+ (cz2cos({Jt) + c23 sin({Jt) ) exp(at) . 

Here x1 is the real eigenvalue, a the real part of 
the two camplex eigenvalues and ±{J their ima­
ginary parts. cxl >  cx2 etc. are coefficients partly 
controlied by the initial coordinates X0, Yo and Z0,  
partly by the eigenvectors belonging to the three 
eigenvalues. 

Now, at this point we shall make use of the 
condition that the 3 X 3 matrix in eq. ( 1 1 5 )  is 
of a special nature which permits us to extracr 
the eigenvalues without going through the lengthy 
procedure of solving a third degree equation such 
as would be necessary in the general case. W e 
shall presently see that the root x1 == iy is found 
by inspection and that the two other roots, which 
may or may not be complex, are determined by 
a seeond degree equation. Denoting the elements 
in the matrix of eq. ( 1 1 5 )  by au the characteristic 
equation may be written in the simple form 
( 1 18 )  (all - x)(a22 -x)(as 3 - x) ­

- al3a3 l(a22 - x) ==  O, 



Bull .  geol. Inst. Univ. Uppsala, N. S. 6 (1974) Homogeneous strain and progressive deformation 61 

because the four elements a1 2 , a2 1 , a2 3 and ag z x = e - o , o 2 51 (cx2cos (0,4465 14t) + cx3 sin (0,4465 14t)) , 
in the matrix of eq. ( 1 1 5 )  are all zero. One of 

( 1 2 5 )  y =  cy1 e0 , 0 5 1, the roots which satisfies this equation is clearly 
z =  e - 0 . 0 2 51 (c22 cos (0,4465 14t) + c23 sin (0,4465 14t)) . 

x1 = a2 2  (= i::y in our special case) . 

Since Ey is always real so is the root x1 . 

If we moreover cancel (a2 2 - x) on either side of 
the equality sign we obtain the quadratic equation 

( 1 19) (a1 1 - x) (a3 3  - x) - a1 3a3 1  = O, 

who:e two roats are 

With the expressions for aii insened the farmula 
for the roats is 

( 1 2 1 )  X; =  Hix + iz) ± 
± fY ( ix - i2) 2 - 4k, - i2) ysin0cos0 . 

These two roots or eigenvalues are comp!ex when 
the terms wirhin the square-root sign sarisfy the 
condition 

(we assume that ysinOcosO is positive) in which 
case the imaginary part of the roats is 

( 1 23 )  ifJ = ikV 4(ix - i2) ysin0cos0 - <ix - i2) 2 , 

and the real part 

( 1 24) 

Numerical example (1 ) .  - First we select the 
following strain rates and angle between the shear­
plane and the x, y plane : 

Ex =  0,2 5 ,  E y = 0,05 ,  Ez = - 0,30, 
y = l ,O, 0 = 45 ° .  

These values earrespond t o  a weak lengthening 
in the y direcrion (i.e. along the axis of rotation) 
and an average shrinkage in the x, z plane. 

Inserted in the farmula for the eigenvalues 
these data give 

Xl = 0,05 ,  Xz = - 0,025 + 0,4465 14i, 

X3 = - 0,02 5  - 0,4465 14i. 

Before introducing the eigenvalues inta the 
integrated eqs. ( 1 1 7)  we no te rh at a number of 
the coefficients in these equations vanishes. With­
out going through the argument here we can show 
that cx 1 , c2 1 , cy2 and cy3 all vanish, hence the 
integration yields 

The five coefficients may be determined by the 
five independent equations below which are valid 
at t = O 

(a) 
(b) 

( 1 2 6) (c) 
(d) 

(e) 

Yo = Cy l , 
Zo = Czz , 
x = a1 1x0 + a1 3Z0 = - 0,25x0 + 0,5z0 = 

= - 0,025cx2 + 0,4465 14cxs , 
i = a3 1x0 + a3 gZ0 = - 0,5x0 + 0,2z0 = 

= - 0,02 5c22 + 0,4465 14c2g . 

The first three equarions follow directly from 
eqs. ( 1 2 5 )  by simply putting t = O  while the two 
last ones are obtained by differentiation with 
respect to t of eqs. ( 1 2 5 )  and equating the result 
with the original differential equation ( 1 1 5 )  in 
which the relevant numerical parameters are in­
serted. The coefficients cx2 , cx3 , C2z , Cz3 and Cyl 
t hus determined are inserred in eqs. ( 1 2  5 )  to giv e 
their numerical forms 

x =  (x0cos (0,4465 14t) + ( 1 , 1 1 9786z0 -

- 0,5039x0) sin(0,4465 14t) ) e C - 0 . 0 2 5 1) , 

( 127)  Y = Yoe0 . 0 51, 
z =  (z0cos (0,4465 14t) + (0 ,5039z0 -

- 1,1 19786x0) sin(0 ,4465 14t)) e( - o . o 2 51) . 

The partide paths as given by these equations 
are spirals whose diameter decreases continuously 
at the same time as they stretch out along the 
y- and - y  axes . Only points which originally were 
on the x, z plane remain on that plane while 
spiraling about origin. In Fig. 17 the generd 
character of the partide paths is indicated. The 

period is t =  
2n 

= 14,072 units of time. 
0,4465 14 

In the course of a period the particles get doser 
to the y axis - which is the axis of rotation 
- by an amount determined by the facror 
e - 0 , 0 2 5 · 1 4 , 0 7 2 = e - 0 . 3 5 1 8 = 0,70342 . For ex-
ample a partide originally at X0 = l ,  Yo = O, 
z0 = O is after one period at x0 = 0,70342, Y u = 
O, z:J = O. 

Numerical example (2) . - In this example we ler 
the strain iy be compressive, accordingly there 
is an average expansion in the x, z plane in order 
to keep the volume constant. We se!ect the follow-
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z 

x 

F i g. 1 7. Spiraling partide p a rh in the plane y = O characterisric for a certain earobination of 
3 -dimensional strains.  Described by a partide initial! y at x = l, z = O. Positions of partide 
indicated at t =  l,  2, 3 etc. time units. For description see text. 

ing values for the strain rates and the shear-plane 
inclination 

Ex =  0,30, f� = - 0,05, Ez = -0,25, 
y = 1 , 8 = 45°. 

Calculation of corresponding eigenvalues yields 

Xl = -0,05, X2 = + 0,025 +0,446514i, 
'"'3 = + 0,025 -0,446514i. 

Inserted in the integrated eqs. ( 1 17) these e igen­
values give the coordinates to the partide paths 
(since the coefficients cx1 ,  Cz l > cy2, cy3 vanish, 
see eqs. ( 1 25) ) :  

x = e 0 . 02 51 (cx2cos (0,446514t) + cx3 sin(0,446514t) )· 
( 1 28) y = cy1e - o . o 5t, 

z = e 0 . 0251 (c22cos (0,446514t) +c23 sin(0,446514t) )· 
The five coefficients are determined by the same 
merbod as in the example above, viz. from the 
following equations which are valid at t = 0 : 

( a) 
(b) 

( 1 29) (c) 
(d) 

(e) 

Xo = Cx2> 
Yo = Cyb 
Zo = Cz2, 
x = a11 x0 +a1 3Z0 = -0,20x0+0,5z0 = 

= 0,025cx2 +0,446514cx 3 ' 
i = a31 x0+a3 3z0 = -0,5x0+0,25z0 = 

= 0,025cz2 +0,44651 4cz3 · 

For explanation see eqs. ( 1 26) . 
With the thus determined coefficients introdu­

ced the particle-path equations read : 

(a) x =e 0, 02 51 (x0cos (0,446514t) + 
+ ( 1 , 1 1 9786z0-0,5039x0) sin(0,446514t)), 

( 1 30) (b) y =y"e - 0 , 0 51, 
(c) z =e 0 , 025t (z0cos (0,446514t)+ 
+ (0,5039z0 -1, 1 19786z0) sin(0,446514t) ) . 
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z 

Fig. 1 8. Spiraling partide path in the plane y =  O characteristic for a certain combination of 
3 -dimensional strains. Described by a partide initially at x =  l, z = O. Numbers on path 
indicate positions at different time units after commencement of deformation. See text. 

The only difference between this set of equations 
and those describing the movements in the pre­
vious example is in the sign of x1 ( - 0 ,05 )  and 
the sign of the real part of x2 and x3 , viz. a =  
0,02 5 .  

Also in this example the partide paths are 
spirals twisting around the y axis. However, now 
the particles move continuously away from the y 
axis at the same time as they circle about this 
axis . All particles, except those lying on the x, z 
plane, also exhibit a component of movement 
along the y and - y  axes, getting continuously 
doser to the x, z plane. 

The movement trend in the x, z plane is shown 
in Fig. 18 .  

Progressive evolution of  the strain ellipsoid. -

W e shall limit the discussion of the progressive 
evolution of the strain ellipsoid in three dimen­
sions to the case with spiraling partide paths ( i .e. 
complex eigenvalues of the rate-of-displacement 
matrix) . In cases with real eigenvalues and hence 
simple-curve type partide paths the behavior of 
the strain ellipsoid differs only in degree - not 
in principle - from that already studied for the 
two contrasted orders of sequential superpositions. 
W e ma y expect, however, that the analysis of the 
strain ellipsoid in cases with spiraling partide 
paths gives nontrivial and new information. 

For the above special combination of irrota­
tional three dimensional strain and simple shear 
that gave spiraling partide paths the equations 
for the paths (eqs. ( 1 27) p. 61 )  may be ex­
pressed in matrix form, thus : 
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( 1 3 1 )  

m which 

a1 1 = exp(at) (cos (/ft) - c1 sin(j3t) ) 
a1 3 = c2 exp(at) sin (j1t) 

( 1 32 ) a2 2  = exp(x1 t) 
a3 1 = - c2 exp(at)sin(j1t) 
a3 3 = exp(at) (cos (/ft) + c1 sin(j1t) ) 

a is the real part and j1 the imaginary part of 
the two conjugate camplex eigenvalues of the 
rate-of-displacement matrix and x is the real eigen­
value. c1 and c2 are constants . 

The expressions for x0, Yo and z0, which must 
be inserred in the equation for the initial sphere 
in order to obtain the equation for the strain 
ellipsoid, follow from inversion of the matrix 
a bov e :  

o x 

( 1 33 )  Y o o y 

z 
L 

Here 6.' = aua3 3 - a1 3a3 1 . A shorter notation 
for the same equations will be used in the deve­
lopment of the equation for the strain ellipsoid, 
VIZ. [X0 j rB1 1  
( 1 34) Yo = O 

Z0 L B3 1 

o 

o 
Introduction of the'e formulas for x0, Yo and Zu 
into the initial sphere with unit radius yields 

( 1 3 5 ) (B i 1+B� 1 )x2 + B � 2y2 + (B i 3 + B� ; )z2 + 
+ 2 (B1 1B1 3 + B3 1B3 3 )xz = l , 

which is the equation for the disrorred sphere, 
i.e. the strain ellipsoid. To obtain the principal 
axes of the ellipsoid we follow the rourine of 
transforming the equation to the matrix form and 
extract the eigenvalues. 
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is the matrix form of the ellipsoid equation whose 
characteristic equation is 

( 1 37)  (B i l+ B � l- Jc) (B� 2 - Jc) (B i 3+B L - 2) ­
- (B1 1B1 3 + Bs lB,d 2(B � 2 - /.) = O. 

One immediately sees that one root of this equa­
tion is 

Jc1 = B� 2 • 
To find the other two roms one divides by 
(B � 2- Je) - nate that (B � 2 - Ä) is not zero w hen 
Je assumes values different from 21 - and obtain 
the seeond degree equation 

( 1 38) (B i 1 + B L- },) (B i 3 + B L - Je) ­
- (BuB1 :3 + B3 1B3 3 ) 2 = O, 

whose two roots are 

( 1 39) Jci = ! <B i 1 + B � 8 + B i 3 + B L ) ± 
± ( (B1 1B1 3 + B3 1B3 3 ) 2 - (B i 1 + B� 1  ) (B i 3 + 
+ B� 3 ) + i (B i l + Bi 3 + BL + B� ) 2 )t. 

For any specified case with defined strain rates 
ix, iy, Ez and y and defined angle (} between the 

y 

x 

Fig. 1 9. The cross seetian in the x, z plane of the strain 
ellipsoid shown at t =  l, 3, 6 and 7 ,036 units of time 
after the commencement of progressive 3 -dimensional 
strain of the kind also shown in Figs. 1 7  and 20 .  
The outermost stipled circular curve outlines the size of 
the initial sphere from which the strain ellipsoid forms. 
The innermost stipled circular curve shows the size of 
the principal cross seetians in the x, z plane of the strain 
ellipsoid at t =  7 ,036. For explanation see also text. 
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z 

x 

Fig. 20. Fattern showing orientation and length of two principal axes of strain ellipsoids formed 
during progressive composite 3 -dimensional strain of the kind described in text. At t =  O the 
strain commences and the starting points of the two spiraling curves cut off the same length 
of the x and the y axes . This length is the radius of the initial sphere which continuously 
deforms to the strain ellipsoid. The two spiraling curves starting at t =  O, one on the x axis, 
the other on the y axis, give the length and orientation of two of the principal strain axes at 
any time (up to 30 time units in the figure) after the straining has started. At t = 3, for example, 
the two principal axes coincide with the two radii which meet the two spirals at t =  3. These 
two radii are r.ormal to one another - as is true with all pairs of radii with the same number 
- and one sees that the Iong principal axis lies in the first (and third) quadram and the 
short principal axis lies in the fourth (and second) quadrant. At t =  7 units of time the 
principal axes coincide in direction with the axes developed at the very beginning of the de­
formation. The axes are now, however, shorter than initially, and both are equal in length. 
At t = 7 units of time the strain ellipsoid is hence bi-axial with the axis of rotational symmetry, 
which is the longer one, being parallel to the coordinate y axis. 

x axis and the simple-shear direction, the elements 
aii in the matrix of eqs. ( 1 32 )  and consequently 
also the coefficients B ii in eq. ( 1 39) are functions 
of t only. Consequently the roots of eq. ( 1 38) -
i.e. the eigenvalues of the matrix of the strain­
ellipsoid equation - and thus the lengths and 
orientations of the principal strain axes are func­
tions of the time of evolution. 

The numerical example l treated above has 

the following parameters needed for numerical 
calculation of the strain ellipsoid 

a =  - 0,02 5 ,  f3 = 0,4465 14, 
c1 = 0,5039 and c2 = 1 , 1 19786 . 

These values go via the elements aii of eq. ( 1 3 2 )  
in  to  the coefficients B ii of  form ula ( 1 39) for the 
eigenvalues. 

The eigenvalues and the length and orienta-
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tian of the axes of the strain ellipsoid have been 
calculated for a sequence of times as shown in 
Figs. 19 and 20 .  We nate that the Iong axes 
(parallel to y) increases continuously while the 
short and intermediate axes exhibit alternating 
shortening and lengthening at the same time as 
they rotate around the dock. To balance the 
continuous lengthening of the Iong axis the 
product of the intermediate and the short axes 
decreases continuously while they rotate and 
pulsate. Each time the short and intermediate axes 
return to and pass a given augular position they 
have be:::ome shortened. This is demonstrated in 
Fig. 20. 

Appendix 
In the discussion throughout this paper we 

have selected only examples in which neither the 
rates of strain, i and y, nor the augular deviation, 
(}, between the simple shear direction and the 
principal axes of the irrotational part of the 
strain have varied with time and/or with posi­
tion in space. 

The reason for this limitation is not that 
eonstant strain rate is particularly applicable to 
natural rocks but rather that the elements of the 
matrix of the rate-of-displacement equations there­
by become independent of time and space and 
we aceordingly obtain a system of differential 
equations with eonstant coefficients. Such systems 
of differential equations are easy to integrace to 
generate the particle-path equations which coasti­
tutes the basis for the study of progressive de­
formation in systems undergoing strain such as 
deforming rocks. Our equations would be more 
applicable to conditions eneountered in nature 
if they also would account for strain rates which 
vary with time and/or position in space. 

Generally the integration of rate-of-displace­
ment equation with variable coefficients - i.e. 
the generation of the corresponding particle-path 
equations - offers a difficult mathematical pro­
blem. 

Under certain circumstances, however, systems 
of differential equations of the type examplified 
by the rate-of-displacement equations in this 
paper may readily by integrated even if the 
coefficients are not eonstant but are functions of 
time. Integration offers no special problem if each 
of the eoefficients can be considered as a pro­
duct of a eonstant and a time function, say f(t) , 
provided that the function f(t) is the same for all 
coefficients. This eondition allows us to consicler 
some cases in which the rate of strain changes 
with time. 
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As a plane-strain example assume that the 
straining starts at eonstant rates ix , Ey and y at 
time t =  O, but then increases with time as, say, 
the function f(t) = ln( e + t) .  This function is 
unity at t =  O and increases firstly moderately fast 
with time and then more and more slowly. 

Introduction of the factor ln (e + t) in, say, eq. 
( 30) p. 40 yields 

( 140) 
( a) [ x  l

=
� Aln(e + t) Bln(e + t) � � x l '  

(b) jt J l Dln(e + t) Eln(e + t) J l y J 
where we have used the notation : 

( 14 1 )  

A = E.x - ysinfJcosfJ 
B =  ycos2fJ 
D = - ysin 2fJ 
E = i y + ysin(}cosO .  

The solution of  this system is 

(a) x =  c1 1 exp [xl [!n(e+ t)dt] + 
( 142) + c1 2 exp [x2fln(e + t)dt] , 

(b) y = c2 1 exp [xl [!n (e+ t)dt] + 
+ c2 2 exp [x2Jln(e + t)dt] . 

Here x1 and x2 are the eigenvalues of the matrix � ix - ysinOcos(J ycos 20 l = 
�
A 

l - ysin 20 iy + ysinfJcosO lD 

and cii are coefficients partly determined by the 
initial coordinates of the point we wish to follow. 

Since solutions of type ( 142 ) are not quite 
obvious and furthermore are not found in many 
books on applied mathematics we shall show that 
the solution is correct. If solution ( 142) is t rue 
then the differentiated form 

( 143) x = c1 1x1 ln( e+ t)exp [x1fln ( e+ t)dt] + 
+ c1 2x2 ln(e+ t) exp [xdln(e  + t)dt] 

must be identical to ( 140 a) : 

( 144) x =  Aln(e + t)x+ B!n(e + t)y. 

It is now practical to rewrite eq. ( 143) t hus 

( 145)  
x = A!n (e + t) (c1 1 exp [xl [ln(e + t)dt] + 

+ c1 2 exp [x2 fln( e + t)dt] ) + 
+ (x1 - A) ln(e+ t) c1 1 exp [xl fln(e + t)dt] + 
+ (x2 - A)ln ( e+ t) c1 2 exp [xdln(e +  t)dt] , 

where the Iong term in the seeond parenthesis is 
the expression for x as given in equation 142 a. 
Consequently the expression 
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( 146) (x1 - A)ln(e + t) c1 1  exp [xl /ln (e+ t)dt] + 
+ (x2 - A)ln(e+ t) c1 2 exp[x2/ln(e+ t)dt] 

m eq. ( 145)  must be identicall y equal to 

( 1 47) Bln(e+ t)y, 
or - with the expression for y from eq. ( 142 b) 
imroduced identical te 

( 148) Bln(e + t) 

Homogeneous strain and progressive deformation 67 

that the factor ln (e+ t) in the matrix of the rate­
of-displacement equations does not influence the 
ratio between the coefficients in the integrated 
equation. 

(c2 1 exp [x1 Jln(e + t) dt] +c2 2exp [x2fln ( e + t) dt]) .  

The other two equations needed t o  determine 
completely the form of the coefficients cii follow 
by purting x =  x0 and y = Y o at t = O in eqs. 
( 142) .  Before this can be done, however, we must 
integrate the term In (e + t) dt in the exponent. 
This integral is (t+ e) ln(e+ t) - t. Inserting this 
integral in eq. ( 142 ) and putting x =  x0 and 
y = Y o at the same time as t = O yield 

lt follows that 

(a) 
( 1 49) and 

(b) 

Hen c e 

(a) 

( 1 50) and 

(b) 

(x1 - A) ln(e + t) c1 1  = Bln(e+ t) cz 1 

(x2 - A)ln(e+ t) c1 2 = Bln(e+ t) c2 2 . 

B cl z/Cz z = --­xz - A  
That is the ratio between the coefficients c1 1  
and c2 1 equals the ratio between the components 
of the first eigenvector of the matrix 

and c1 2 and c2 2 are related as the components of 
the seeond eigenvectar to the same matrix. Nate 

( 1 5 1 )  
( a) 

(b) 

X0 = c1 1 e"'1 e+ c1 2 e"'z e , 
Yo = Cz l e"' l  e+ c2 2 e"'2 e. 

Equations ( 1 50) and ( 1 5 1 )  allow us to determine 
the four coefficiems in the particle-path equations. 
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