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The geometry of strain superposition in two and three dimensions is treated mathe-
matically. The first half of the paper is devoted to the two-dimensional case. After an
introductory study of examples on sequential superposition of pure- and simple shear
simultaneous superposition of these two classes of strain is treated more thoroughly.
Simultaneous superposition implies progressive deformation. In the course of progressive
deformation the finite strain is determined by the integrated version of the rate-of-
deformation equation.
particle-path equation which describes the path of any particle in the deforming body.
Applied on the set of particles lying on a circle in the undeformed body the particle-
path equation gives the strain ellipse and describes the progression of the strain ellipse
in time. In general the particle paths are open curved lines. Special combinations of
simple shear and pure shear give, however, closed particle paths which constitute sets
of concentric ellipses. Under such circumstances the strain ellipse pulzates and rotates
completely around the clock during the deformation, the number of rotations depending

Integration of

the rate-of-deformation equation yields

only on the extent of final strain.

The second half of the paper treats the geometry of three-dimensional strain. Also
in this part examples on sequential superposition of two classes of strain are firstly
considered as introduction to the more interesting simultaneous superposition. Rate-of-
deformation equations for the three-dimensional simultaneous superposition of strain
are developed. These are integrated to form the particle-path equations in three dimen-
sions. From the latter the finite strain, and in particular the strain ellipsoid, follow
at any moment which we choose to consider during the deformation. For special
combinations of irrotational three-dimensional strain and simple shear in a direction
inclined to the principal axes for the irrotational strain the particle paths assume the
form of three-dimensional spirals. The corresponding strain ellipsoid undergoes a kind
of pulzating motion at the same time as it deforms progressively. For example, the
long principal axis may continue to grow with time while the short and the median
however, decreasing continuously with time. (The latter
condition follows from the restriction of the theory to incompressible substances — i.e.

axes pulzate, their product,

the volume of the strain ellipsoid remains constant.)
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The two-dimensional case

Introduction

The two chief classes of two-dimensional strain
of incompressible materials are the irrotational
pure shear and the rotational simple shear. These
are, however, special cases of strain which are
applicable to rocks. Indeed, the strain in rocks
is generally three-dimensional; if one nevertheless,
however, wishes to simplify the treatment by
assuming a two-dimensional geometry one at least
must consider a more complicated deformation
geometry than that defined either by pure shear
or by simple shear. Neglecting the elastic com-
pressibility of rocks and assuming chemically clo-
sed systems (no material transport to and fro the
volume of rock under consideration) we shall find
that a combination of pure shear and simple shear
is general enough to describe most kinds of plane
strain which rocks may undergo. The combina-
tion may either be simultaneous or sequential.

Pure shear is an irrotational finite plane strain
defined by compression in one direction (the prin-
cipal compressive strain) and a volume-conserving
extension (principal extensive strain) normal to
the compression. Both longitudinal strain and shear
strain vanish in the direction normal to the plane
containing the two principal axes of strain. The
paths of movement of the particles are families
of hyperbolas whose axes bisect the angle between
the axes of principal strains. In the following we
shall let the principal extensive strain coincide
with the x axis of our orthogonal coordinate system
and the principal compressive strain coincide with
the y axis.

In this coordinate system finite pure shear is
described by the linear transformation

x ) (1+¢) 0 )
o | )= J o)
LY (0 (I+e) ) 190

Here x, and y, are the initial coordinates to a
particle which is being displaced with the body,
and x and y the coordinates to the same particle
after the deformation. e, and ¢, are the finite
principle strains in the directions x and y respecti-
vely.

%,

Simple shear is a rotational plane strain defined
by a finite shear strain in a given direction which
remains fixed (does not rotate) in the deforming
body and along which longitudinal strain vanishes.
This direction may be distinguished as the simple
shear direction and should not be confused with
the direction of maximum shear strain. The particle
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paths are straight lines parallel to the simple shear
direction.

Let the simple shear direction coincide with
the axis x” in our coordinate system, y” being not-
mal to x’. Simple shear is then described by the
linear transformation

XY (1 )1 (%)
) ,J: J , J
LJ LO 1 L Tﬂ

where y defines the magnitude of finite simple
shear strain. x),y’ are the initial coordinates to a

particle which is being displaced with the body
and x’, 9" the final coordinates to the same particle.

Sequential superposition of pure and simple shear

Pure and simple shear are rather artificial types
of strain which, however, may be combined to
give more realistic strain patterns of the kinds
sometimes occurring in deformed rocks. The com-
posite finite strain may either be the result of
sequential superposition or of simultaneous supet-
position. It is known that the composite finite
strain resulting from the sequential superposition
of two or more less complex strain geometries
generally depends upon the order of superposition;
see for example Ramsay, 1967. The treatment of
an example may be informative. To make the su-
perposition as general as possible without, how-
ever, departing from two-dimensional geometry,
we let the direction of simple shear (the x” axis)

y

Fig. 1. Relative orientation of the coordinate system
x, y for pure shear and the system x’, ¥’ for simple shear.
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in the simple-shear deformation deviate by an angle
6 in the anti-clockwise sense from the axis of
principal extensive strain in the pure-shear defor-
mation (Fig. 1). It is convenient to select the axes
of principal strain in the pure-shear deformation
as the coordinate axes to which all displacements
will be referred. The x axis coincides with the
strain ¢, and the y axis parallels the strain ¢,. The
displacements associated with the pure shear are
then given by the linear transformation already
considered (eq. (1)). To make the simple-shear
displacements relate to the same coordinate system
we must rotate the coordinate axes x” and y" (eq.
(2)) clockwise through an angle 6 in relation to
the simple shear direction. This rotation cor-
responds to a transformation of coordinates be-
tween the two coordinate system thus

( cosf sinf ) [x\

X
o (220
y ( —sind kosd | [y

where x/,9" are the coordinates in the system
whose x” axis parallels the simple-shear direction
and x, y are the coordinates to the same point in
space in a system whose x axis is rotated clock-
wise through the angle 6 relative to the axis x".

Transformation (3) applies both to the initial
coordinates and to the final coordinates in the
simple-shear equation (2) which consequently
takes the form presented as eq. (4).

cosfl sine} x )

4)

 —sinf cosf

[

(0 1

Ly
{ cos sinf ) (x,
( —sinf cosf Yo .

Expansion of eq. (4) yields

(a) xcosf+ysind = (cosd — ysinf)x,+

) + (sinf +ycosd)y,

(b) —xsinf+ycosd = —x,sind + y,cosb.
Solved for x and y these equations give

(@) x= (1—ysinfcosh)x,+y(cos26)y,
(6)
(b) 3= —(ysin20)x,+ (1+ ysinfcosb)y,,

or expressed in matrix form:

[xy J { (1—ysinfcosf) ycos26 } Koy )

Uy Lym'J'

Equation (7) transforms particles from x, y, to
x,7 when the simple shear strain is y and the

\ —ysin26 (14 ycosfsind)

(1—ysinfcosf) (1+¢,) ycos20(1+e¢y) )

L —ysin26(1+e¢,)
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simple shear direction makes an angle 6 with the
X axis.

In the same coordinate system the pure shear
cotresponds to the transformation shown as eq. (8).

x) ((1+e) O ) (%, )
* (%)
Ve L0 (I+ey) ) Yo

Assume now that a substance (a rock) is first
deformed in pure shear and subsequently in simple
shear. In this case the final coordinates x. and
v, after the pure-shear deformation are to be taken
as the initial coordinates x,, and y,, for the sub-
sequent simple shear deformation. Hence expres-
sion (9) follows

(14200 )

Xor Xe
9) =} = J }
Yor Ve 0 ( 1 + F_\') Yo

which must be inserted in eq. (7) to obtain the
composite transformation which corresponds to
the sequence pute shear overprinted by simple
shear. The composite transformation takes the
form shown in eq. (10).

xt;e"]

" x (1—ysinfcosf) ycos26 1
(10) —
Ly —ysin26 (1+ysinfcosf)
((l—i-ex)o 1 (%,)
L0 (1+6y>J L%J.

Carrying out the matrix mulitplication we obtain

w |-

Ly
X, )
(1+ ysinfcosh) (1 -i—sy)J Yo J

On the other hand we may reverse the order,
starting with simple shear and following up with
pure shear. In this sequence we have

{mmw {mw
Yoe J ¥y J

and the composite transformation becomes

12)

x (I14+e,) O )
(13) = J
Ly L0 (1+ey)
(1—ysinfcosh) ycos2f IRER

[ —ysin26 (1—i—ysin0c056’)J L %o J
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Fig. 2. An initial square (I) deformed in sequential superposition of simple shear and pure shear.
The axes x and y coincide with the principle strains for the pure shear while the simple shear di-
rection is inclined to the coordinate axes, see text. A shows the result when simple shear precedes pure
shear, B when the order of superposition is reversed. The crossed arrows define the principal
axes of strain. The origin of the coordinate system is fixed in the deforming body.

or
x )
(14) J =
Ly
(1—ysinfcosd)(1+¢;) ycos26(1+e,) NE

Since the square matrix of eq. (14) is not identical
to the square matrix of eq. (11) the final coordina-
tes x, y will generally not be identical in the two
sequential superpositions of opposite order if the
initial coordinates are the same.

As an example assume e, = 2, ¢, = — 5, y =1,
and 6 = 45°. Inserted in eq. (11) these numerical
values yield eq. (15)

x ) 1,5000 0,16667 ) (x,)
(15) =

>

Ly J (—1,5000 0,5000 |3,

which gives the final transformation of points
in the case that pure shear precedes simple shear.
The deformation of a square is shown in Fig. 2B.
In the case that simple shear precedes pure shear
the numerical values in our example must be
inserted in eq. (14). The result is eq. (16).

(1+ysinfcosf) (1 +8y)J LYo J

1,5000

oo [

1,5000 ) (x,)
Ly L —0,16667 0,500

Yo
The deformation of a square according to this
transformation is shown in Fig. 2A.

In the special cases that the direction of simple
shear coincides with the x- or the y axis the angle
6 is 0° and 90° respectively. For § =0 the
transformation for the superposition takes the
form shown in eq. (17) in the case that pure

shear precedes simple shear, and the form shown
in eq. (18) if the sequence is reversed.

{x} "(1-{-6_\-) y(1+e) ) [ % )
(17) = J ( J
y L0 (I+ey) ) U2
[x ] [(1+£x) y(1+e)) [xﬂ 1
(18) ==
7l arer )

Since generally ¢, = ¢, the coefficient matrices
of eqs. (17) and (18) are not identical and it
follows that the resulting composite strain also
in this case depends upon the order in which
the two types of deformation are superimposed.

The deformation of an initial circle into the
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finite strain ellipse probably gives more informa-
tion on the various details of the strain geometry
than the deformation of any other kind of figure.
We shall therefore study the strain ellipses created
by the sequential superposition. The procedure
to follow is firstly to solve the appropriate equa-
tion for the finite deformation (i.e. one of the
egs. (11), (14), (17) or (18)) with respect to the
initial coordinates x, and ,. The expressions for
x, and 7, thus obtained are then inserted in the
equation for the initial circle, eq. (21). The result
is the equation for the strain ellipse.

Suppose that we write the general equation for
the composite deformation as follows (eq. 19)):

{ x ) (A B (x,, )
Ly J \D E J L% J
where the coefficients A, B, D and E depend upon
which superposition we are studying (i.e. whether
it is eq. (11), (14), (17) or (18)).

Inversion of the matrix gives the initial coordi-
nates expressed in terms of the final coordinates,

thus:

(19)

] E B
%o NN
(20) = D 4
Lyo VAN A\ L i

Here A\ = AE—BD is the determinant to the
coefficient matrix of eq. (19).

The initial circle with unit radius is described
by eq. (21):

(21) 2 g2 =1,

in which we insert the expressions for x, and
Y, in order to obtain the deformed circle, i.e.
the strain ellipse, eq. (22),

E24-D2 BE+ AD
(22) x2— —— xy
(AE—BD)?2 (AE—BD)?
A2+ B2 T
(AE—BD)23

This is the equation for an ellipse (or another
conic section depending upon the character of
the coefficients) with center in the origin and
axes generally inclined to the coordinate axes.

One way of determining the axes of the strain
ellipse and its inclination is to put the equation
for the ellipse in matrix form, thus:

E2+ D2 BE+AD) W|
2 2 x
(23) (x ) A A .
_E?E+A2 i2+B2.
LT A2 A2 LJ’
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and to take the eigenvalue of the coefficient matrix
of the ellipse equation. (For the method of detet-
mining the eigenvalues of a matrix see e.g. Hadley,
1961.) As discussed for example by Hammarling
(1970 p. 20), the two eigenvalues of the 2 X 2
matrix of the strain ellipse equation furnish both
the length of the axes, say 7; and 5, and the slope
of the axes, say y1/x1 and y5/x5. The relationships
are

(a) =,
(b) ol =Eee==ls
A2
E24-D2—}4
tgDy; = y1/x1 = — - —
(a) 8P1 = J1/%1 BELAD
o DETAD
(25)  A2+B2—y
E24-D2—},
b t CD = = —_— c —
(b) gPo Yo /%o BELAD
BE+4D
A2+4-B2— ],

Here 7; and A5 are the two eigenvalues of the
coefficient matrix in eq. (23). The eigenvalues as
expressed in terms of the coefficients in the
matrix are

(@6) k= (42+B2+D2tE:
2(AE—BD)?

+V (A2+B2—D2—E?)2 4(BE+ AD)?2)

The axes of the strain ellipses for our two ex-

amples of sequential superposition are shown in
Figs. 2A and 2B.

Simultaneous superposition of strain:
progressive deformation

A plastic or viscous body may be strained in a
fashion that can be treated as a simultaneous super-
position of two or more classes of less complex
deformation, such as eg. pure shear and simple
shear. When this occurs the composite strain at
any moment during the deformation depends
upon the absolute and the relative rate of change
of the pure shear and of the simple shear.
The rate of change of longitudinal strain is

commonly identified by the symbol ¢ = de and the

T dr
rate of change of shear strain by the symbol
iy where # is time
Y= d .
2
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Note that we define de as d/// (i.e. infinitesimal
natural strain) and not as d//l,. The difference
between d//I and dl/I, is that / is the distance
between two points at any instance we wish to
consider during the straining process while I,
is the distance between the points prior to strai-
ning. The symbol & is accordingly identical to
d Iéd—; where dl/dt is the rate of displacement.

In the above discussion of sequential superposi-
tion we were interested in the finite strain and
the corresponding finite transformation of points
such as defined by egs. (11), (14), (17) and (18).
These equations inform only on the relation be-
tween the initial geometry and the final geo-
metry. No information is supplied on the path
from the initial- to the final state. We are now
interested in the progression of the deformation
from the initial- to the final situation. That means
we must consider the rate of change of strain and
the corresponding rate of change of displacement
of points. In other words we must consider the
differential equations which relate displacement
to strain. The rates of change of the displacement
components x and y to a point in a homogeneous-
ly deforming body are related to the rate of
change of strain according to the simple eqs. (27)
and (28). “Homogeneously deforming” means
that the rate of change of strain is constant through-
out the body.

(x, (¢ 0 [ x
(27) =
Ye J \o &y y /
is valid for pure shear, and
r i;. ™ i 0 r x ™y
(28) —
% ) L0 0 y

for simple shear when the simple-shear direction
coincides with the x axis.

In the general case when the simple-shear
direction makes an angle 6 with the x axis the
equation becomes somewhat more complicated.
The sought equation can be shown to be:

% ) —jsinfcosf pcos26 ) x )
(29) = .
L 9y [ —ysin26 ysinfcosd | y

20 d .

In the above equations x E—fand y = j—i/
The subscripts ¢ and y indicate whether the
displacements relate to pure shear or to simple
shear.

Equation (29) follows when we operate on

i
30|
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either side of eq. (28) with the rotation matrix

{ cosf sinf | . | .
—<ind cosHJ similarly as done in eq. (4).

In the course of the simultaneous superposition
of the two classes of strain any particle in the
body moves along a path determined by the
combined geometry of the pure shear and the
simple shear. Therefore, at any moment during
the deformation the coordinates x,y to a particle
are to be used simultaneously both in the equa-
tion for pure shear and in the equation for simple
shear. In other words, eq. (27) and eq. (29)
(we choose to use the general simple-shear trans-
formation) are simultaneous equations when the
two strains are combined contemporaneously. This
means that the simultaneous superposition of the
two kinds of strain is accomplished mathematically
by adding the coefficient matrices in eqs. (27) and
(29); at the same time the column matrices on
the left side of the equations must also be added.
(Note that the adding of the coefficient matrices
in the present case of simultaneous superposition
contrasts the multiplication of the coefficient
matrices in the above case of sequential super-

position.) The adding yields
} éx— psinfcosd ycos26 ) x}

O [ —ysin26 &yt ysinficosh || y

Here x =x.+x, and § = 5.+ 5.

If the rates of change of strain, ¢, y, are kept
constant during the deformation and likewise the
direction of simple shear, 6, is fixed eq. (30)
constitutes a system of ordinary linear differential
equations with constant coefficients inasmuch as
. dx . dy

= )= =—. h ' eq.

X== and y = dr We shall refer to eq. (30) as
the rate-of-displacement equation.

Two real and distinct eigenvalues of the matrix
of the rate-of-displacement equation. — The solu-
tion of the system of differential equations (30)
takes different forms depending upon whether the
two eigenvalues of the coefficient matrix are
distinct, coincident, zero, real or complex. If the
eigenvalues are real and distinct the general form
of the solution is:

x 11 €12
(31) =
Lk (€21 €22

exp(x12) )
Lexp(at) J '

(See books on ordinary differential equations, e.g.
Kreider et al, 1968.) Here %; and xo are the
eigenvalues to the coefficient matrix in eq. (30)
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and ¢;; are constants determined partly by the
initial coordinates, x,,7,, to the particle whose path
we wish to follow, partly by the magnitudes of ¢,
v and 6. The eigenvalues are also determined by
the magnitudes of ¢, y and 6 such that all quanti-
ties except the time, ¢, are constant in eq. (31)
if we have selected the initial position of a particle
and ¢ y and 6 do not vary during the deforma-
tion. Equation (31) consequently shows how the
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(a11—x%1) @12 1 (e11)

(36) J J:o,
a21 (a9 —21) Lc21
(a11—x2) a12 ) (e12)

(37) J J:o.

221 (a9 —n2) ) [ c22

From egs. (35), (36) and (37) we obtain

coordinates to a particle change with time, i.e. the @ g (2 f"ll)xo_”lﬁ’o
equation describes the particle path. We shall %o — %1 ?
sometime refer to eq. (31) as the particle-path
. 9 3D 4 p (‘zlluxl)xo_*_“l&'yo
equation. (b) 612 =- »
o o o 5 o — X
For the further discussion we simplify the nota- k2T
. - L (38) 1 0
tion of the coefficient matrix in eq. (30), thus: (#1—ay1) (g —a11)a; ) x,— (%1 —a11)Y"%
() a1 =—— —— —=
&, — ysinfcosf  ycosf a11 d1o ) w2
= : (411_d1)(?¢2—411)“1’._,1xn+(33_“11)9’0
—ysin2f &yt ysinfcosf sy doo (d) cpa= .

The eigenvalues follow then from the determinant
equation

(211 — %) a12
(33)

a3 (ag2—2)
which gives

(34) i =14(a11taz2)

+ 3V (411 —a22) 2+ 441 0401,

where the positive and the negative square root
associate with respective ; and xs.

Having thus determined »; and xy — which
are to go in the exponents in the particle-path
equation — expressed in terms of &, ¢,, y and 6
we shall seek expressions for the coefficients ;.
The following reasoning is valid provided the
eigenvalues are real and distinct.

Firstly we note that at # =20 eq. (31) becomes

(a) c11te1z =2,
(35)

(b) €21 + Cas =Yg,
where x, and y, are the initial coordinates to the
particles we wish to follow. But we need two more
independent equations to determine the four un-
known coefficients. It is known (e.g. Kreider et al.
1968) that the ratio ¢q1/coq equals the ratio be-
tween the components of the eigenvector that
belongs to the eigenvalue x;, and that the ratio
¢12/¢a9 equals the ratio between the components
of the eigenvector that belongs to the eigenvalue
#9. This is expressed in egs. (36) and (37).

Ho T H1

When the expressions for 4;; and #x; (formulas
(32) and (34)) are inserted in the formulas for
¢;j we see that the coordinates x and y as expressed
by eq. (31) are uniquely determined by the initial
coordinates x, and 9,, by the strain rates ¢ and y,
by the direction of simple shear relative to the
x axis, 6, and of course by the lapse of time,
t, after the commencement of the straining.

To gain insight into the character of the de-
formation a numerical example will be treated.
In so doing we shall take care to ensure that the
numerical value selected give eigenvalues that are
both real and distinct because that is a necessary
condition for the above mathematical treatment.
Later in this paper the implication of complex
eigenvalues shall be studied. Firstly one notes that
the term #(a1;+as9) in the eigenvalue formula
(34) vanishes because ¢, = —¢,, for incompressible
materials undergoing plane strain. Only the root-
sign term therefore remains in the eigenvalue
whose expression reduces to

(39)

—
%= V&2 —2¢,ysinfcosd

when the formulas for @1, @12, @21 and 499 are
introduced and ¢, is put equal to —¢,. Real and
distinct eigenvalues consequently occur either
when

£y => 2ysinfcosd
& <O,

provided that y is positive (i.e. the displacement
in the direction of positive x increases when y
increases) and that the direction for the simple-
shear component of the composite strain lies in the
first and third quadrants. The latter condition
implies that sinfcosf is positive.

or when
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t=
/21 0551/, = 1,835
VX 2111 Yol X5 =-0,0905

170,307, 2,=3,255
NIX =T, Yo Xy == 0,141

A,70173, 1,=5822
V11X, = 6,211 Y,/ X27-01611

-2

Fig. 3. Progressive deformation shown at different times of square deformed in a combination
of pure shear and simple shear, see text. Particle paths of the corner points also shown, so is the
strain ellipse. The origin of the coordinate system is fixed in the deforming body.

The conditions for real eigenvalues are met
by the following selected quantities in a numerical
example:

6 =45°
&y = —¢, = 0,2 time unit-1
y=0,1 time unit-1.
The corresponding eigenvalues are
%= 1V 002= +0,14142.

Inserted in the formula for ¢;; listed above the
selected quantities yield

c11 = 1,03033x,+0,17678y,,
C19 — — 0,0,7)033)6'0 - 0,17678y0,
ca1 = —0,17678x,—0,03033y,,
cas = 0,17678x,+ 1,03033y,,.

Here x, and y, are the initial coordinates to the
particle we wish to follow during the deforma-
tion.

The above expressions for x; and ¢; go into
eq. (31) which then expresses quantitatively the
particle path in terms of the coordinates x and
y as functions of time, see eq. (40).

Let us follow firstly the movement and change
of shape of an initial square whose edges were
parallel to the coordinate axes and whose corners
were initially located at the poins (1,1), (1,2),
(2,1) and (2,2) respectively (Fig. 3).

In Fig. 3B are shown the particle paths of the
corner points through the time ¢t =0— =12
time units. The distorted square is shown at time
t=4, 8, 10 and 12 units.

The strain ellipse, however, gives more im-
mediate and detailed information on the character
of strain than any other geometric figure. It is
therefore worth taking the additional mathemati-
cal labor needed to determine the progressive
changes of the strain ellipse.

An initial circle with unit radius is described
by the expression
(41) xE-fy2 =]
if its center coincides with the origin of the co-
ordinate system.

To follow mathematically the deformation of the
initial circle to an ellipse with continuously
changing axial ratio we proceed as described
above (p. 39ff.) and solve the equations for the

(a) x=(1,03033x,+0,17678y,)exp(0,14142¢) —
(40) —(0,03033x, +0,17678y,)exp( — 0,14142¢),

(b) y = (—0,17678x,—0,03033y,)exp(0,14142¢) +
+(0,17678x,+1,03033y,)exp(— 0,14142¢).

particle path (eq. (31)) with respect to x, and
9,- The initial coordinates thus explicitly expressed
in terms of the finite coordinates x and y at any
time, #, are now emplaced in the equation for
the initial circle which consequently changes to
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the equation for the strain ellipse at any time
we choose to consider.

With the expressions for ¢;; inserted, eq. (31)
takes the form

(a) x = Ax,+ Bx,,
(42)
(b) ¥= Dxr>+E}'th
where we have used the notation:
A=22 — %11 exp(x12) —mexp(zgt),
Xa — X1 o T X1
A1z
B= — (exp(;;,t} —exp(at)),
Ha —iH1
(43)

L= i —a11) (g —411) (exp(xl t)— exp(xﬁ)),

(22 —%1)ay2

H1— 4 #o
E=— |- —ucxp(xlt)—-
a2 T ¥

Solved for x, and y, the system (42) yields

"1 exp('r:gx))

Xo —H1

@ =D
AE—BD
(44)
Ay—D
(b) L Al
AE—BD

which emplaced in the circle eq. (41) furnishes
us with an expression for the strain ellipse:

_ E24-D? , BE+4D
(AE—BD)?2 (AE—BD)?
A2+B2
(AE—BD)?’

05—

(45)

xy+

This is the equation for an ellipse (or another
conic depending upon the character of the coeffi-
cients) with center in origin and axes generally
inclined to the coordinate axes. For a system with
given ¢, y and 6 the eigenvalues x; and xo are
also determined, and the coefficients A, B etc.
depend only upon the time . Hence eq. (45) with
the expressions for the coefficients introduced
shows in fact how the ellipse rotates and becomes
deformed in the course of the progressive defor-
mation. To show this explicitly we proceed to
determine the functions between time and the
orientation as well as the lengths of the ellipse
axes.

Following the procedure previously applied the
equation for the ellipse is now put in matrix
form:
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E2+4 D2 __BafAQ_W(xw
(AE—BD)?  (AE—BD)?
BE+AD A2+ B2 \

.\ (AE—BD)? (AE—BD)?2 {y

(46) {

(x y)’ =1.

In this form the equation for the ellipse furnishes
both the length of the axes and their orientation
by means of the above mentioned standard proce-
dure of determining the eigenvalues and the eigen-
vectors. The eigenvectors that belong to the two
eigenvalues of the coefficient matrix in eq. (46)
coincide with the orientation of the axes of the
ellipse, and the lengths of the axes are simply

(see p.39). We choose

r1 = ——and ry =
A1 2
/1 as the symbol for the eigenvalues connected
with determining the strain ellipse to avoid con-
fusion with the eigenvalues » used to determine
the particle path; see p. 41. The eigenvalues of
the coefficient matrix in eq. (46) are the roots
of the quadratic characteristic equation, hence:
1

h=——

2(AE—BD)?

+V (A2+B2>—D2?—E?)2+ 4(BE+4D)>).

(47) (424+B2+D2+E2+

The ratios between the components y and x of
the eigenvectors — and therefore also the inclina-
tion of the axes of the ellipse — are

_y1_ E2+D2—}

(a) tgdy =— )
X1 AD+BE
(48)
b)  tad, =2 ETD* "1z

@ are here the angles between the axes of the
ellipse and the coordinate axis x.

Fig. 3A shows how an initial circle changes
into a strain ellipse whose axial ratio and axial
slope change continuously in the course of time.

The values used for ¢, y and 6 are defined on
p- 42.

Complex eigenvalues of the matrix of the rate-of-
displacement equation: periodic particle path and
“pulzating” strain ellipse. — For incompressible
materials of the kind under study the eigenvalues
to the matrix in the rate-of-displacement equation
(30) contain only the square root part, thus

(49)

If & 2<T2¢.psinfcosf, that is when 0<é, <<
2ysinfcosf, the eigenvalues are complex provided

i = + ¥V i2—2¢,gsinfcosh.
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that both y and the product sinfcosf are either po-
sitive or negative. Remember that ¢, is always po-
sitive in our examples; see above. Since the general
solution of the rate-of-displacement equation con-
tains the eigenvalues as exponents, complex eigen-
values mean that the solution is of periodic form:

(a) x=rcy1c0s(ft)+ c19sin(f2), and
(50)
(b) y=rcaycos(f2) +caasin(ft).

Here =7V —&2 +2¢,psinfcosd and c;; are co-
efficients.

That ¢y1 and cq equal x, and y, respectively,
is readily seen when x and y are put equal to the
initial coordinates x, and y, when # = 0. The two
remaining coefficients are determined by differen-
tiation of eq. (50) with respect to ¢ and equating
the differentiated forms to the initial expressions
for x and 7 (eqgs. (30) and (32)) at time zero.
This procedure yields

(a) x=fc1a =a11x,F 4129,
(51)
(b) 3= fcas =as1x, T a229,

The consequent expressions for c1s and cgo are

a11 412 . __ 421 422
512=_x0+ Yos €22 — —xo+ ﬂ Yo-

B B B

The particle-path equations accordingly become
(a) x= { cos(B2) + "171 sin(ﬁt)] %o+

+ dl—zsin(ﬂt)yo,
B
(52)
(b) y= ‘—z;—lsin(ﬁt)xo—f-

+ L cos(pt) + % sin(f?) }yo.

These periodic equations describe particle paths
that are closed in the sense that any particle will
return to its starting point whenever (fz) is a
multiple of 2.

This solution looks intriguing and deserves
further analysis. It obviously gives a deformation
pattern quite unlike the straight particle paths
occurring when the eigenvalues vanish (p. 47)
or the curved but open paths implied by real
eigenvalues (p. 42).

Before studying the behavior of the strain ellipse
under the conditions of complex eigenvalues some
particle paths will be calculated.

Bull. geol. Inst. Univ. Uppsala, N. S. 6 (1974)

Let y=1 and § =45° as before. For ¢, we
select 0,25 (which also implies ¢, = —025) in
order to make the eigenvalues complex. The se-
lected parameters generate the following coeffi-
cients and eigenvalues

a11 = —0,25; a1 =0,5; as1 =—0,5; ag2 = 0,25,
= 1tV 0252—025 = +0,433; = + fi.

These quantities are to be inserted into eq. (52)
which consequently reads

(a) x = [co0s(0,433¢) —0,57737sin(0,433¢) ] x, +
+[1,1547sin(0,4332)y,,
(53)

(b) y = —1,1547sin(0,433¢)x,+
+ [cos(0,433¢) +0,577375in(0,4332) 1y,

The path traced by a particle originally at
any given coordinate x, and 9, is an ellipse whose
axes bisect the coordinate axes such as shown in
Fig. 4. Indeed, the paths of all particles in the
body constitute a family of concentric ellipses,
all with the same axial ratio and the same orien-
tation, viz. the long axis making 45° angle with
the positive x axis. The velocity along the paths
relative to the fixed coordinate system increases
proportional to the distance from origin as long
as we are considering particles lying on the same
radius. However, the velocity along any given
path is not constant, neither is the path velocity

Fig. 4. Particle path of a particle initially at x = 1, y =
0. Positions shown at # =1, 2, 3 etc. units of time. For
the special combination of pure shear and simple shear
needed for the closed path see text.
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constant if we compare particles at the same
distance from the center but at different radial
angles. These relationships imply some strain in
bodies affected by this particular combination
of pure- and simple shear, but a chief part of the
movements is a rigid rotation.

The interesting novelty in the present case
which puts it in contrast to the cases with straight
or curved but open particle paths is the complete
round-the-clock rotation, the number of complete
cycles only depending upon the time involved. In
contrast the rotation in simple shear, for example,
does not exceed 90° even if the magnitude of
shear is infinite. Lines can never rotate across the
simple shear direction.

It is informative to consider the movement
pattern in two other numerical examples which
give complex eigenvalues and thus closed particle
paths.

In the first of these examples we select &, =
0,75; y=1 and §=45°. The corresponding
values for the coefficients etc. are

ay1 =0,25; a1 =055 as1 = —0,5; aga = —0,25.

%= £V 0,752—0,75 = +
+4V 0,1875 = 0,433 = * pi.

The complex eigenvalues are identical to those
obtained in the previous example, but since &, is
different the equations controlling the particle
path become slightly different, viz. (see also the
general formula, eq. (52)):

< X
]

Fig. 5. Particle path analogous to the one shown in
Fig. 4, but here the result of a different combination
of pure shear and simple shear. See text.
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(a) x = [co0s(0,433¢) +0,57737 sin(0,433¢) ] x, +
+1,1547 5in(0,433%),,
(54)
(b)y = —1,15475in(0,4332)x, +
+ [cos(0,4332) —0,577375in(0,4332) ]y,

These equations describe particle paths belonging
to a family of concentric and geometrically similar
ellipses whose long axis makes an angle 135°
with the positive x axis (Fig. 5). Though this set
of particle path ellipses slope in the opposite
direction of the ones above, the sense of rotation
of the particles is the same, namely with the
clock.

A special situation occurs at the following com-
bination of simple shear and pure sheat:

e, =205 y=1; § =45°.
From these data one obtains

a1 =0; a1 =05; 221 = —05;
42220 and ®i— i0,5¢:/3z

Introduced into the particle-path equation these
data yield

(a)
(b)

These are the equations for rigid rotation without
any strain. That is, the particle paths constitute
a family of concentric citcles. The velocity on any
given circle is constant but it increases proportio-
nal to the distance from the center.

We shall now turn to the behavior of the strain
ellipse in the three cases above with complex
eigenvalues of the matrix in the rate-of-deforma-
tion equation.

Putting the equations for the particle path (eqs.
(52), (53), (54) and (55)) in the general form

(a) x=Ax,+By,,

(b) y=Dx,+Ey,.

and going through the procedure of transforming
the original circle to the strain ellipse expressed
in matrix form, eq. (57), we obtain formula
(58) for the eigenvalues.

x = cos(0,5¢)x,+ sin(0,5¢)y,,
(55)
y = —sin(0,5¢)x,+ cos(0,52)y,.

(56)

(7) D+E*  BE+AD (
* 7) (AE—BD)2 (AE—BD)>2 lx .
BE+AD A2B2 . o= =0
“(AE—BD)? (AE—BD)? ||’
(58) Li=1[(42+B2+D2+E2) +

+V (A2—E2)2+4(BE+A4D)?2).
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e,
Fig. 6. Strain ellipse shown at £ = 1, 4, 6 and 7,26 units
of time when the combination of pure shear and simple
shear is as in Fig. 4. Stipled curves indicate circum-
ference of initial circle to which the strain ellipse will

also return repeatedly at # = X 7,26 units of time.
See text and Fig. 4.

Expression (58) 1is simpler than the one used
previously (eq. (47)) because for the three cases
now under discussion AE—BD =1 and B =
= P!
For the case &, =025, y=1, 6§ =45° we

find

A = cos(0,433¢) —0,57737sin(0,4332),

B = 1,15475in(0,433¢),

D = —1,1547sin(0,4332),

E = c0s(0,433¢) +0,57737 sin(0,433¢).

Inserted into expression (58) these coefficients
give 17 and 1y as functions of time.

Based on the formulas for the length of the
axes, viz.:

and for their slope
’ 2L e
tgd’l,-:}':D +E2—);
Xi BE+AD

we can obtain numerical values for the axial slope
and the axial ratio at selected times during the
progressive deformation.

Figure 6 refers to the combination &, = 0,25,
y=1, 6 =45°, and fig. 7 to the combination
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ex =075, y =1, 6 =45°. The only difference
between the two cases is in the formulas for
A and E. In the &, = 0,75-case

A = c05(0,4337) +0,57737 sin(0,433¢),
and

E = cos(0,433¢) —0,57737sin(0,433¢)

which differ from the values of A and E noted
above. The plots in Figs. 6, 7, 8, and 9 give the
length and orientation of the principal strain
axes as functions of time.

For the combination ¢, =0,5, y =1, § =45°
the coefficients are

A = cos(0,5¢); B=1sin(0,5¢); D = —sin(0,52);
E = cos(0,52).

Put into the matrix form of the ellipse, the latter
coefficients give

1 0 x
(xy){o 1] [yJ:L

The coefficient matrix of eq. (59) has two coin-
cident eigenvalues equal to unity. Furthermore the

(59)

slope of the axis, y/x, is l-g-l

that the axial orientation is indeterminate. We
also note that the symbol for time has vanished
for the strain ellipse equation which in fact has
degenerated to the equation in matrix form of

= %which means

Fig. 7. Strain ellipse shown at # =1, 2, 6 and 7,26 units
of time when the combination of pure shear and simple
shear is as in Fig. 5. Stipled curves indicate circum-
ference of initial circle to which the strain ellipse returns
periodically after » X 7,26 units of time. See text and
Fig. 5.



Bull. geol. Inst. Univ. Uppsala, N. S. 6 (1974)

Homogeneous strain and progressive deformation 47

Fig. 8. Dumbbell-shaped pattern showing the orientation and length of the strain ellipse axes
at t=20, 1, 2, 3 etc. time units after the commencement of deformation. The radius of the
initial circle equals the length cut off the y and x by the dumbbell-shaped curve. The radii
marked £ =0, t=1, 2 etc. and 1’, 2’ etc. mark the position and length of the principle axes
of the strain ellipse at # =1, 2, 3 etc. time units. The figure is to understand such that the radii
with primed numbers coincide with the one principle axis and the unprimed radii coincide with
the other axis. At ¢t =3 time units, for example, the long axis of the strain ellipse coincides
with the radius marked 3 and the short axis falls on the radius marked 3’. Compare also Fig. 6.

a circle whose radius does not change with time.
However, the linear transformation (55) which
applies to the last example shows that the system
undergoes a rigid rotation.

Vanishing eigenvalues of the matrix of the rate-
of-displacement —equation: straight-line particle
paths. — The eigenvalues of the matrix of
the rate-of-displacement equation (30) vanish
when &2 — 2¢,psinfcosf as noted on p. 41; that
is when ¢, =0 and when ¢, = 2ysinfcosd. The
case ¢, =0 is trivial. It implies that the only
deformation is the simple shear y in the direction
6. The case £, = 2ysinfcosf is, however, worth
some comments. For numerical demonstration we
select § =45° and y =1 as in the above examp-

les. To satisfy the condition &, = 2ysinfcosf we
must then give ¢, the value 1 (since sin45°cos45°
=0,5).

When the eigenvalues vanish for the above-
mentioned matrix it can be shown that the solu-
tion to the rate-of-displacement equation (30)
assumes the simple linear form (G60)

() x=cy1tteya,
(60)
(b) Y = €211 Ca2.

In these equations the constants ¢12 =x, and
¢a9 = 9,. This is readily found by putting 7 =0,
and x and y equal to x, and y, respectively. As
usual x, and y, are the initial coordinates. To
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Fig. 9. Dumbbell-shaped pattern giving the length and orientation of the principal axes of
the strain ellipse at # =10, 1, 2 etc. time units after commencement of deformation. The radius
of the initial circle is equal to the length cut off the y and x axis by the dumbbell-shaped curve.

For explanation see Fig. 8. Compare also Fig. 7.

determine ¢y and ca; we differentiate with re-
spect to ¢ and obtain

x=c11,
y = ca1.
These expressions must also equal
(a) (e, — yosinfcosh)x, + (ycos26)y,
(61)
(b) (—ysin20)x,+ (&, +ysinfcosh)y,,

and

respectively, at time zero, see eq. (30).
Hence all four coefficients are determined, and

eqs. (60) read

62) (a) x = [(,—ypsinfcosh)x,+ (ycos26)y,]?+ x,,

Introduction of the selected numerical quantities
&y, 7, 0 and rearrangement yield

(a) x = (1+%2)x,+ t1y,,
(63)
(b) y = —ktx,+ (1—3%2)y,,

in which we also have taken the condition for
incompressibility, e, = — ¢, into account. A study
of the above equations reveals that they represent
simple shear parallel to a direction that makes
135° with the x axis (" =135°) (Fig. 10). The
shear strain is positive. In other words, the com-
posite result of a simultaneous superposition of
pure shear and simple shear of the magnitudes
and relative orientation as selected in the present
example is actually a new simple shear in a

(b) y=1[(&,+ysinfcosd)y,— (ysin26)x,]¢+y,. direction which is normal to the original direction
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Fig. 10. Particle path (the lines from # =0 to # = 3) of two points, initially at #= 0, generated
during combined pure shear and simple shear. For the relative magnitude and orientation of the
two types of strain necessary to give the straight particle path see text.

and with a shear-strain rate equal to the original
rate. In pure shear we know from general strain
theory that the maximal shear-strain rate, y,..
in directions that bisects the x and y axes is nume-
rically twice as large as the principal strain rates,
€y and &y. (|¥max| = |2€x]). This is shown in Fig.
11A. When now a simple shear of magnitude
|75 | = |€x| is superimposed in a direction which
makes 45° with the positive x axis the effect is
that the shear-strain rates which are associated with
the pure shear are reduced to half their original
values. This is shown in Fig. 11B.

If we wish to obtain the equation for the
strain ellipse corresponding to the deformation
under study we follow the previously prescribed
procedure. That is, we firstly solve eqs. (63) for
the initial coordinates, thus

(a) x, = (1—%z)x— 32y,
(64)
(b) Yo = $tx+ (14 32)y,

and insert these expressions for x, and y, into the

equation for the initial circle with unit radius
and center in origin. This procedure gives the
strain ellipse equation

(65) (322—r+1)x2+r2xy+ (312424 1)y2 =1,
whose matrix form is

(322—1+1) 422 1(x )

(66) (x J/) J =pI%
122 @24+ Ly

The eigenvalues of the coefficient matrix of eq.

(66) are

(67) h=324 143V 422414,
Applying the formulas
1 1
L= — o — >

(a) tgh == e
X1 — 32
(68) and
(b) — Y2 _ 522__13;}”2 )
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Fig. 11. Direction and sense for maximum instantaneous
shear strain in the case of pure shear (A) and the case
of combined pure shear and simple shear (B). See also
text.

we find how the length and the slope of the axes
of the strain change with time as the deformation
proceeds.
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The three-dimensional case

Sequential superposition of irrotational strain in
three dimensions and simple shear

Irrotational finite strain in three dimensions of
an incompressible substance can be described by
the linear transformation (69) shown below provi-
ded that the axes of principal strain coincide with
the coordinate axes.

x (146 0 0 MNEA
69) |y |=|0 (1+¢&,)0 Yo |-
|
z L0 0 (1+e)) Lz,

Here x,, y,, 2, are the initial coordinates, x, y, z
the final coordinates and ¢, ¢y, ¢, the finite prin-
cipal strains. The incompressibility of the material
requires that (1-+e&.)(1+¢,)(1+¢,) =1

A rotational part of the deformation can be
introduced by adding simple shear to the three-
dimensional irrotational strain. If we are free to
determine the magnitude and the orientation of
the simple shear relative to the x, y, z axes then
the combination: three-dimensional irrotational
strain and simple shear allows us to describe
mathematically most — if not all — kinds of
homogeneouns three-dimensional strain of incom-
pressible substances. The said combination is
therefore of particular significance for the study
of deformed rocks.

Simple shear strain of magnitude y parallel to
x’, the plane x’, 9" being the slip plane, in an
orthogonal coordinate system x’, §’, 2’ can be de-
scribed by the linear transformation (70)

x ) 1 0 y) X

70 |y|=lo1 0|y
|

L2 Lo o1J(<«

4

Equation (70) describes a transformation in which
there is no displacements parallel to 3" and 2z’
while the displacement in the x’direction increases
with increasing distance from the x’, 9" plane. In
order words, we have simple shear parallel to the
x’ axis. The motion may also be called laminar
flow along x’, the x’, 9" plane being parallel to the
laminae which also coincide with the simple shear
plane.

We have primed the coordinate system for the
simple shear to distinguish it from the system
used for the irrotational strain because the two
coordinate systems need not be parallel when wwe
combine the two kinds of deformation. It is now
possible to add to the irrotational strain a simple
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shear of any magnitude and with any orientation
of shear plane and shear direction simply by
placing the axial system x’, y’, 2 of eq. (70) in
the appropriate orientation relative to the system
x, 9, z of eq. (69). In order to combine the two
kinds of deformation we must transfer the co-
ordinates of both transformations to a common
coordinate system. We choose the x, 9, z system
of the irrotational strain as the common one;
hence it only becomes necessary to transfer the
coordinates in the x/, y’, 2’ system used for the
simple shear into the x, y, z system.

The transformation of coordinates to points
fixed in space between two orthogonal coordinate
systems which are rotated in relation to one an-
other about a common fixed origin, are given
by eq. (71) which contains the matrix of direction
cosines.

x cos(x'x) cos(x’y) cos(x'z) x )
(71) |y | =] cos(y'x) cos(y'y) cos(y’z) || v
€4 cos(z’x) cos(z’y) cos(2'z) le

Here (x'x), (x’y) and (x'z) are the angles between
the x” axis and the axes x, y and z respectively.
(9'x), (") and (y’z) are the angles between the
9" axis and the axes x, y and z, while (z'x), (2'y)
and (2'z) are the angles between the axis 2’ and
the x-, y- and 2z axes respectively. The square
matrix in eq. (71) is the matrix of direction cosi-
nes also called the rotation matrix in three dimen-
sions. If we wish to transform the simple shear
as expressed in the x’, ', 2’ system into the x, y, z
system we must change both the initial coordinates
and the final coordinates by means of the rota-
tion matrix. Expressed in the x, y, z system the
equation for the simple shear consequently be-
comes

011012013 Xy
021 022 023
(831032033 J Lz,

(1 0 y 011012013 e
=60 1 © 021 022 023 Yor | -
| |
(031 032 033

L2,y
In this expression [d;;] is the rotation matrix
expressed somewhat more conveniently than in
eq. (71). X, Yoy 209> Xy ¥, and z, are the initial
and the final coordinates respectively, in the x, v, z
system of particles displaced by simple shear of
magnitude y in a direction x” which makes an
angle 611 (with cosine d11) with the x axis, an

(72) ¥ | =

0 0 1
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angle 6,5 (with cosine d12) with the y axis and
an angle 613 (with cosine d13) with the 2z axis.
The shear plane is normal to the 2’ axis, the latter
making the angles 631, 035 and 635 with cosines
031, 032 and d33, respectively, with the x avis,
the y axis and the 2z axis.

We wish to express explicitly the final coordi-
nates of a displaced particle in terms of the initial
coordinates, the magnitude of finite simple shear
and the orientation of the shear plane and shear
direction, ie. the direction cosines. To this end
we firstly perform the matrix multiplication on
the right-hand side of eq. (72). This procedure
leads to eq. (73)

011012913

Xy
(73) 021 022 023 Yy

(031 032 033 Lzy
(811 +0517) (O12+3327) (813 +8337) ) %y )

021
931

Oaa

633

022

632

Yor
L 2oy

In eq. (73) x,,, ¥,y and z,, may be regarded as
the independent variables and x,, 7, and z, as the
dependent variables. The solution with respect
to the latter are expressed in eq. (74)

(74)
(@) ay1 012615 412 012 013 13 012013
%, =|021 022 023X, T|022 d22 d23|Y0y T 023 022 023
031032 033 932 032 933 033 032 d33
(®) 1811411 013 011412 013 011413 13
Yy =|021 021 023|%oyT|021 022 023(Y0y T|021 d23 d23
031 931 933 031032 933 031033 933
(©) 1011612411 011012412 011012413
z, =|021 022 021|%,; (021 22 O22(Ysr T|021 d22 d23
031 032 931 031932 32 031032033

In €q. (74) a11 = (311"’(331)/; a12 = (512+6327/
and a13 = 6134‘6337/.
The straight vertical lines on either side of the

array of direction cosines in eqs. (74) signify deter-
minants. The solution for x,, 3, and z, follows
from the application of Cramer’s rule (see e.g.
Hadley 1965) on eq. (73) when the fact that the

ZOE')

N

oY
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determinant to the matrix of direction cosines is
unity is also considered (see e.g. Jaeger 19606).

For the benefit of the continued computation
eqs. (74) are put in matrix form, thus:

wi Aq1 Aq2 Axs xoﬂ
(75) Yy | =] Aa1 Ass Aoz | | Yor
z, ) Agq Az2 Az Lzor

Ay etc.ineq. (75) correspond to the determinants

a11 012 013
021 022 023
031032 033

It is also possible to develop an equation identical
to (75) by making use of the condition that the inverse
of the rotation matrix, [6”], equals its transpose, [6”]*.

Equation (72) then takes the form:
x, " 1 0 9) % )
¥ |[=[8;1*%10 1 0 [6”-] Vo7 | :
I
Lz, ) 0 0 1 LZg7
Here the product of the three square matrices oa the

right-har.d-side of the equation is identical to the matrix
[Aij] in eq. (75).

etc. in eqs (74).

Equation (75) describes the displacement of
particles in the x, y, z coordinate system when the
shear direction and the shear plane of simple
shear are inclined to the coordinate axes, the in-
clination been given by the magnitude of the
elements in the matrix of direction cosines.

Now, in the same coordinate system an irrota-
tional strain with principal strains parallel to the
coordinate axes is described by eq. (76)

X | (I1+e&) O 0 W‘fxoe
(76) |y |=10 (1+¢,) O Yoe
Zg LO 0 (1+ez) ‘Lzoe J

Assume that the irrotational strain and the rota-—

tional simple shear are superimposed in different
orders, viz. case (1): Irrotational strain is followed
by simple shear, and case (2): Simple shear prece-
des irrotational strain.

Case (1): Irrotational strain precedes simple
shear. — In this case the final coordinates to a
particle after the irrotational deformation func-
tion as the initial coordinates to the same particle
for the subsequent simple shear, hence we have

(77) [ %6y Yor Zoy] = [%: ¥: £.].

The consequent combination of egs. (75) and
(76) leads to eq. (78).
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%y
(78) y, |=

Lz,
Ayy Ay Ay Y[ (1) 0 0 (% )
Azy Az Azy || 0 (14¢,) 0 | o
s, A5 455016 0 it

Matrix multiplication furnishes the total trans-
formation from the initial coordinates of particles
to their final coordinates after both the irrotational
deformation and the simple shear have been per-
formed. The result is presented in eq. (79).

e

79) Yy | =

Lz,

(A11(1+8x> A12(1+e,) Ayz(1+e,) ) [ x4 )

Az1(1+e,) Aoo(1te,) Aog(1+e,) || Ve
|

(Az1(1 tey) Aga(ltey,) Ass(1+e;) )24

Case (2): Simple shear precedes irrotational strain.
— Now the final coordinates produced by the
simple shear function as the initial coordinates to
particles subsequently displaced in the irrotatio-
nal strain. We therefore put

(80) [%oe Yoc 20e] = [y 9y 2,]

and obtain the consequent combination of egs.
(75) and (76), viz.

Xe )
(81) ¥e | =

Z
(1+e,) 0 0 V(A1 Ay2 A1z ) (%0 )
0 (146, 0 {A21A22A23 L’ov
LO‘ 0 (1+e,) 'LA;;l Aze Aan )2,

Carrying out the matrix multiplication we obtain

eq. (82)
Xe
Ye | —

|Lz!'
A11(1+€_‘-) A12(1+€_\-) Al;;(lJu_ﬁ“_-)‘] xm.W
_— A21(1+61J.) Agg(l +€J.) A:.’..'i(]- Jl_éf_\.) Yor

LA:u(l"i‘Ez) Azo(l+¢,) Azz(1+e;) Lzu:'

(82)
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Since not all the three principal strains can
be equal for incompressible media such as many
rocks the equation systems (79) and (82) are not
identical. The two equation systems accordingly
show quantitatively how the composite deforma-
tion depends upon the order of superposition.

To obtain an equation for the finite strain
ellipsoid we must solve eqs. (79) or (82) with
respect to the initial coordinates x,, ¥, and 2, such
that the latter become expressed in terms of the
finite coordinates. Insertion of the thus formed
expression for x,, ¥, and 2, into the equation for
the initial sphere gives the equation for the finite
strain ellipsoid.

Inversion of the matrix in eqs. (79) or (82)
furnishes the sought expressions for x, %, and
Zy:

Let us note the elements in the inverted matrix
by B and indicate the initial and final coordinates
by the subscripts o and by no subscript re-
spectively.

Then we have

Xo Byy Bys Byg )
(83) Y, | =

L2, (Bzi Bso Bsy J1 2

x )
By Byy Bay ¥

»

where Bj; = cofA-1, cof;; being the cofactor to

the element in the i position in the matrix of egs.
(79) or (82) (depending on which order of super-
position we have selected), and A the determinant
of the same matrix. Incidentally, for incompressible
substances the product (1+e,)(1+e,)(1+e,) is
unity such that the determinant of the coefficient
matrices of both egs. (79) and (82) reduce to

A1 A1 Axs
Aoy Ass Asy
Agy Ago Ass

An initial sphere with unit radius and ceater in
origin is described by eq. (84)

(84) x¥2+y2+ad =1,

in which we introduce x, etc. by their expressions
given in eq. (83), and obtain:

(85)
(B3, B3, 4B o+ (52, B, 4 By
+(B2,+B2,+B2,)22+
+2(B11By2+By1Bas + B3 Bsa)xy+
+2(By1B13+By1Bas + B3 Bsz)xz+
+2(By2B13+B2eBa3+B3aBs3)yz =1,
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or more simply:
(86) ax?+by?+ cz?+2dxy+2exz+2fyz = 1.

The latter two equations describe an ellipsoid with
center at origin and axes inclined to the coordinate
systems.

In order to determine the length and orientation
of the axes of the ellipsoid we follow a procedure
similar to the eigenvalue method used in the
two-dimensional case, pp. 39 ff. Firstly the equa-
tion for the ellipsoid is put in matrix form:

[ﬂde\ x )
(87) wyD|dbf|]|y
Le fells

Here the elements a, b etc. are defined by the
identy between eq. (85), eq. (86) and eq. (87).

Similarly as was done in the two-dimensional
case the orientations of the ellipsoid axes in the
three-dimensional system and the axial lengths
can be determined by the eigenvalues of the
coefficients matrix in eq. (87) see e.g. Efimov
(1966). The length of the axes are

—_— 1 . /r —_— 1 . /r —_— 1 .

Vid D N Vi
where 1; are the three eigenvalues of the 3 X 3
matrix in eq. (87). The eigenvectors which belong
to the eigenvalues of the matrix coincide with the
axes. These are conventional methods of analytical
geometry and need not be verified in this account.

It is unfortunate that the equations which
finally give us the shape and orientation of the
strain ellipsoid viz. eqs. (85), (86) and (87) have
quite cumbersome coefficients. These coefficients
are the results of rather lengthy mathematical
operations performed on the input data. The latter
consist of ¢, y and the three independent angles
6; needed to orient the simple shear direction and
the simple shear plane in the coordinate system
whose axes by choice coincide with the principal
strains of the irrotational part of the composite
deformation. The three angles mentioned are
implied in the matrix of the nine direction cosines
only three of which, however, are independent;
see Jaeger 1966.

In view of the complexity of the coefficients of
the strain-ellipsoid equation in the general case
we shall select a special case with considerably
simplified coefficients when we now present nu-
merical examples.

In this special case the simple-shear plane coin-
cides with the x,y plane but the shear direction
is inclined to the x- and y axes (Fig. 12). This

(88) 71
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Z and Z!

Fig. 12. Two orthogonal coordinate systems whose axes
z and 2’ coincide and whose axes x and x’, and y and
¥’ respectively deviate by an angle 4.

orientation of the shear plane reduces the matrix
of direction cosines to

cosf  sinf 0
(89) —sinf cosd 0|,
0 0 1

where 6 is the angle between the shear direction
and the x axis. That the element a33 is unity in
this rotation matrix signifies that the z- and the 2’
axes coincide. A consequence of the present special
combination of the two strains is that the matrix
[A;;] in eqgs. (75), (78) and (81) is quite simple.
Inspection of eq. (74), in which the consequence
of the rotation matrix is shown by expansion,
reveals that the present version of the matrix [A;;]
is

1 0 ycost
(90) 0 1 ysinf |,
(0 01

remembering that the determinants of the matrix
of direction cosines is unity.

This in its turn reflects on the two transforma-
tions (79) and (82) valid for the composite de-
formation with the two contrasted orders of
superposition. Transformation (79) is now of the
form (91)

"x,. ‘f(l +e&,)0 (1+&,)ycosh | x,e
‘ ¥ = ‘ 0 (1+ey) (14¢,)ysind || 5,
Lz, L0 0 (1+e,) Lz

>
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which is valid when simple shear overprints irro-
tational strain. Transformation (82) takes the
form (92) when the conditions for the special
case are considered.

Xe (1+e,) 0 (1+ &) ycosh [ x,, )
92) [y, |=10 (1tey) (L+ey)ysing || 5,y |.
(2 LO 0 (1+82) |LZ;1:' J

Equation (92) is accordingly valid when simple
shear precedes irrotational strain.

As a numerical example we select the finite
strains and the shear direction noted below.
(1+e) =2; (1+e¢,) =091; (1+¢,) =0,55;
y=13,5; 6 =060.
Note that (1+4¢,)(1+¢,)(1+¢,) = 1,001 which
means that the material is practically incom-
pressible.

For the case that simple shear follows irrotatio-
nal strain the selected parameters yield the trans-
formation (93)

y
B
A
. b 13A

d e
o c f X
z

PPt C 13B

y

z

------ X

Fig. 13. Deformation of a cube in sequential superpo-
sition of 3-dimensional irrotational strain and simple
shear of the kind explained in the text. 13A seen along
the z axis toward the origin. « b ¢ o are corners of
the initial cube. d e f o are the corners of the base of
the deformed cube. A is the top of the cube after de-
formation in the sequence irrotational strain — simple
shear. B is the top of the deformed cube after defor-
mation in the sequence, simple shear — irrotational
strain. 13B shows profiles of the deformed cube in the
planes z, y and 2z, x.
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X

Fig. 14. The cube and its deformed versions as illustrated in Fig. 13 here shown in three

dimensions.
x5 20 0,9625 [ x4e
93) |9 |=[0 091 1,6671 ||y,
z) L0 0 05 Jlz.

The deformation of a cube with corners initially
at the points (000), (100), (010), (001), (101),
(011), (110), (111) according to transformation
(93) is demonstrated in Figs. 13 and 14.

If simple shear precedes irrotational strain the
transformation assumes the form (94)

Xe 20 3,5 Xoy

94 |79 |=|0 091 2,758 || y,»
|

lzz L0 0 055 Jlzy

A cube of the initial shape and orientation de-
scribed above will now change to the shape shown
in Figs. 13 and 14.

For the determination of the strain ellipsoid
in the special case with the simplified matrix of
direction cosines we firstly need to invert the
matrices of eqs. (91) and (92) in order to obtain
explicit expressions for x,, ¥, and z,. The results
are given in egs. (95) and (96).

Xoe (1+e)-1 0

95) Los =10 (1+¢)-1
Lz ) Lo 0
(xoﬂ [(1+5x)_1 0

(96) 95 |=10 (I+ey) -1
lz, ) Lo 0

—(1+ey) ~1ycosh | [«
—(1+e,) - 1ysing 7 |,
(1t+e,)-1 z, J
—(1+e,) ~1ycosd ) | x.
—(1+¢,) ~1ysind e
(1+e)-1 )

Equation (95) is valid when irrotational strain
precedes simple shear while eq. (96) holds for
reverse sequence of superposition.

Introduction of these expressions for x,, 7, and
2, into the equation for the initial sphere furnishes
the sought equation for the strain ellipsoid, viz.:

(97)  ax2+by2+cz2+2dxy+2exz+2fyz = 1
(see egs. (85) and (86).

The coefficients «, b, ¢ etc. in eq. (97) are func-
tions of the elements in the coefficient matrices
either of eq. (95) or of eq. (96), depending upon
the order of superposition. For the sequence:
irrotational strain — simple shear the coefficients
are as follows

a4y = (1+e,) -2 = 02500,

by = (1+e,)~2=1207584,

c1 = (1+e,) " 2y2cos20 + (1+¢,) ~ 2y2sin26 =
—15,166085,

dy=0,

ey = — (1+e,) ~2ycosd = —0,4375,

fi = —(1+e,) - 2psinf = —3,6602933.

The numerical values of the coefficients follow

2 )
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from the values selected for ¢ y and 6 in our
example specified on p. 42.

When the equation for the ellipsoid is put in
matrix form (see eq. (87)) the characteristic equa-
tion which furnishes the eigenvalues is of the
form

(98) 13— (a+b+c)22+(ab+actbc—d2—e2—f2);+

+af2+4be2+cd?—abc—2def = 0.

With the numerical values of a1, by, ¢; etc in-
serted, the characteristic equation becomes

(99) 13—16,62412+8,81861—0,9980 = 0,

whose three roots are (for the solution of cubic
equations see for example Nagell 1962, p. 185)

11 = 16,0630; Jo = 0,1624; 13 — 0,3822.

According to the relationship between axial length
and eigenvalues (see p. 40) the lengths of the
axes of the strain ellipsoid are:

ry = 1- = 0,24951; ro, =
Vi Via
1
rqg = ——=1,617565.
A3
Since the initial sphere has unit radius and the
materials are treated as incompressible the product
r17o#3 should be unity. It is actually 1,0015.
The axes of the strain ellipsoid coincide with
the eigenvectors that belong to the three eigen-
values. We accordingly extract the eigenvectors
and find the following values for the relative
components to the eigenvectors

x1 =1; 91 =89057; 21 = — 36,1439 for
eigenvector 7y,

x9 = 1; 95 = 0,7012; 2o = 0,2002 for
eigenvector 7o and

x3 =1; y3 = —1,3399; 23 = —0,3021 for
eigenvector 73.

— 2,48145;

Only the relative values of the eigenvector com-
ponents are given, based on the x component ar-
bitrarily put equal to unity. The absolute lengths
of the principal strain axes are determined above.

For comparison we consider also numerically
the result of the opposite order of superposition
of the same two kinds of strain. In this case some
of the coefficients in the equation for the strain
ellipsoid assume different forms and different
magnitudes. As a consequence of the numerical
values of the elements in the square matrix of
eq. (96) the coefficients in the equation for the
strain ellipsoid assume the values

Bull. geol. Inst. Univ. Uppsala, N. S. 6 (1974)

ag = (1+¢,)~2=10,2500,
by = (14¢,)-2 = 1,076,
ce = (1+¢,) = 2(y2cos26+y2sin20+ 1) =
= (1+¢,) - 2(y2+1) = 43,8017,
do =0,
es = —(1+e,)~1(1+e,) " Lycosd = —1,5909,
fo= —(1+e,) " 1(1+e,) lysind = —06,0561.
Introduction of these numerical coefficients into

the general equation for the strain ellipsoid (eq.
87) leads to the following characteristic equation

(100) 13 —45,259212+24,93891—0,9980 = 0.
The eigenvalues are accordingly found to be
21 = 44,7018, lo = 0,04344, I3 = 0,5140,

which determine the lengths of the axes, thus

1 1
rn=——=0,1 496; ro =—— =4,7979;
Vi V e
re = 71: 1,3948.
Vs

(The product 717973 which theoretically should be
unity is in fact 1,00114). The principal axes and
the eigenvectors have the following relative com-
ponents, putting arbitrarily the x component equal
to unity:
x1 =1; 31 =3,890; 2y =
axis 74,
xe = 1; 99 = 0,6755; 29 = 0,1299 for the
axis 7o and
x3 =1; y53 = —1,449; 253 = —0,166 for the
axis 73.

— 27941 for the

Simultaneous superposition of three-dimensional
strain: progressive deformation in three dimensions

The simultaneous superposition of three-dimen-
sional irrotational strain and a rotation caused by
added simple shear can be treated similarly as
the two-dimensional case, pp. 39 ff. For homo-
geneous irrotational deformation the rates of dis-
placement x, § and z are related to the rates of
strain ¢y, £, ¢, as follows

x (éxOO x
(101) i l=104é0 ||y
Lell Looe Jla

provided that the coordinate axes coincide with
the principal axes of strain. As usual the dot
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above the symbols signifies differentiation with
respect to time.

The rate of change of simple shear with dis- z =

placement in the x” direction within the shear
plane y’, 2" is related to the rates of displacement
of the coordinates in three dimensions as shown

below
xf
yr‘

1 0 00 I'Lz’

The axes x’, §’, 2" are generally inclined to the
axes x, y, z. If we wish to combine the two kinds
of deformation we must therefore either rotate
one of the two coordinate systems into the other
or rotate both into a third common orientation
without, of course, rotating the strains and
displacements. We choose to rotate the system
x’, 9,2’ into x, y, 2. This means that both the vector
x’, 9, 2" and the vector %', §’, 2’ must be operated
on by the rotation matrix in order to express the
simple shear deformation in terms of coordinates
in the system x, 7, 2. The angles in the rotation
matrix then indicate the orientation of both the
direction and the plane of simple shear in relation
to the axes x, 9, 2, the latter coinciding with the
axes of principal strain in the irrotational part of
the composite deformation.

Application of the rotation matrix on x’, §’, 2’
and on x’, y’, 2" in eq. (102) leads to

x 0 0 y
(102) y|1=/0 0 0

011012 013 x )
(103) [521 22023 | | 7 |=
Lfﬁ:u d32 033 lL z
0 0 y 011012013 %)
0 00 021 022 023 ¥ |
L0 0 0 ) (031032033 ) L2

where [d;;] is the rotation matrix (see eq. (72)).
We now solve eq. (103) with respect to the rates
of displacement x etc. and find

)
0327012 013 0337 012 d13

0

531?; 612 613

0 X+
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611 (312 6517 CS11 (312 6325’\ 811 612 6335/

021 22 0|x+|021 d22 0y+521 dos
d31032 0| [031 032 0} 031 032

The solutions for x, y and z expressed in egs.
(104) follow from the application of Cramer’s rule
(Hadley 1965) on eq. (103) remembering that
the determinant of the matrix of direction cosines
[6;] is always unity, see Jaeger (19606). Inci-
dentally, we follow the convention of denoting
determinants by a straight vertical line on either
side of the atray of elements.

0

A more convenient form of eqgs. (104) is

%y Aq1 A1 A1 xf
(105) Yy | = | Aoqg Az Aoz | |95 |,
z, ) \As1Ass Azs) Lz

in which A;
031y 012 013
0 J22023
032 033

represent the determinants

etc. in egs. (104).

0

Equation (105) can also be developed from (103) by
using the transpose of the rotation matrix which for
this particular matrix is equal to its inverse. Equatioa
(103) can then be written:

&) 0 0 y) x
L J =[51* |0 0 0][4;] { y }
@] 0 0 0) Lz
0 0 vy )
The expression [d;]* |0 0 0 [o;;]
0 0 O

7/

is identical to the matrix [A,.j] in eq. (105).

If the rate of change of shear as well as the di-
rection cosines are constant both in time and space
we see that eqs. (104) or eq. (105) is in fact a
system of linear first order differential equa-
tions with constant coefficients. The same is true
with eq. (101) provided that the strain rates
&y, & and &, are constant within the region con-
sidered. Now the combined effect of the irrotatio-

e Peabasly 0 Ozalap s nal strain and the simple shear is found by adding
0 8s003s| [0 Os00s5| |0 320ss| eq (101) and eq. (105), thus
0110317013 |0110327013| |11 033y 013 x (A11Tey) Ar2 Ay V(x
0210 O23|x+|021 0 23y o210 232 (100)| 5 |=| A2y (Aaztey) Ao y
9310 O33| 0310 33| 0310  d33 z |L/‘131 Az (33 +e.) )z

0|z
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A system of differential equations of this kind
has the solution

x c11¢12 ¢13 |[exp(xq1?)

(107) | 9 |=|ca1ca2cas || exp(xat)
| !

4 Lesq 32 c33 ) Lexp(xs?)

Here x; are the eigenvalues of the coefficient
matrix in the system of differential equations
(106). If the three eigenvalues are distinct ¢
are constants while ¢;; may be functions of # if the
eigenvalues are coincident.

During the continued discussion we shall select
special cases which simplify considerably the
computation of the progressive deformation which
for the completely general case requires quite
cumbersome mathematical operations. As the first
simple example let the 2’- and z axes coincide and
let 6 be the angle between x and x’. This means
that x,y is the plane of simple shear and that
the shear direction makes an angle 6 with the x
axis (Fig. 12). In other words, the relative orien-
tation of the two simultaneously superimposed
strains is the same as in our example of sequential
superposition. The here selected relative orienta-
tion corresponds to the rotation matrix (108)

[ cosf sinf 0
(108> [(3,','] — I —sinf cosf 0
LO 0 1

When this rotation matrix is utilized to generate
the elements A;; in eq. (105) and (106) we find
that eq. (106) assumes the form

% |réx 0 jxcosﬁ\{x\

109 |5 |=lo ¢, jsing ||y

(z (0 0 & ILz
The eigenvalues of the coefficient matrix in eq.
(109) are simply »; — &y, %o — ¢, and x3 = ¢,
thus furnishing the integrated equation (110).
Note that in the present relative orientation of
the simple shear and the irrotational strain all
three eigenvalues are real. A consequence of this
is that the displacements are exponential functions
of the time. (Cases with complex eigenvalues and
hence periodic displacements will be treated later
in this section.)

X €11¢12C13 ] exp(éxt) W

(110) | y |=c21¢22c23 || expleyt)

Lz Lesy ez c33 J Lexp(e,)
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The constants c;; are partly determined by the
initial coordinates x,, ¥, and 2, of a particle whoze
displacements we wish to trace, partly by the
eigenvectors that belong to the three eigenvalues.
It can be shown that the following sets of equa-
tions determine ¢;;:

c11Ftc12te13 =x,,

(111) cp1te2etcaz =19,
c31tezetezz =2,
00 yeos V(€11
(a) | 0 (£,—&,) ysinf cs1 | =0,
L0 0 (8;— &) Jlegq )
((ex—&y) 0 ycosd  [e12)
(112) (b) [ O 0 ysinf €os | =0,
Lo 0 (e;—&y)Jlege)
((6,—¢€;) 0 yeos [ e1z
(c) |0 (EJ, —&;) ;}sinG ca3 | =0.
LO 0 0 Leas

From these relationships we conclude

c12=0, c2; =0, ¢31 =0, c30 =0, ¢33 =2,

ycosf ycosf
C11 =X —T % Q13 =" 20
Ex T & & &y
ysinf ysinf
Cas =%+ — %05 €23 =~ T %o
&y —&; £, &y

Accordingly the integrated equations read:
(113)
y . ycost .
(@) xz(xﬁ:ygsé za>exp<sxt)+ 7O 2 exp(ét),

Ex T & €z &
ysind . ysing )
(b) y=|yo+ "2, )exp(e,?) + ———=2,exp(é,?),
€y &z &2 &y

(¢) z=2z,exp(e,2).

Let us select numerical values for ¢ 7 and 6
which make this case of simultaneous strain super-
position comparable with a previous example on
sequential superposition of irrotational three-di-
mensional strain and simple shear. For that ex-
ample we used

(1+e)=2; (1+¢,) =091; (1+¢,) =0,55;
y =235 and 6 = 60°

(see p. 54).
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To make the rate of change of longitudinal
strain in our present example comparable with
the previous values for (1+¢,) etc. we shall recall
the following relationship

(1+e) :L —exp(et),
Lo
where / and /, are the final and the initial lengths
respectively. Hence the ratio between the strain
rates which best compares with the above finite
strains is

ex/ey/é; = In(1+ey)/In(1+e,)/In(l+e,) =
— 0,69315/—0,094311/ — 0,59784.

With reference to the shear strain, however, we use
y =35 because the relationship between y and
y is linear, viz.. y =y2. 6 is the same as in the
earlier example, viz. 60°.

Yl
: |
t=1,0
o
/
t=0,8
2 t=06
2
t=0,4
I
/
: i 1=0,2 A
/'/
t=0
./.
' L We— 1,
1 2 3 x b

Homogeneous stra:n and progressive deformation

Fig. 15. Cube being deformed in simultaneous combi-
nation of 3-dimensional irrotational strain and simple
shear. A: View along z axis toward origin. B: Profiles
in the planes 2z, y and 2, «.
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ay'

N an

Fig. 16. Two orthogonal coordinate systems whose axes
y and ¥’ coincide and whose axes x and x’ and z and
2" respectively deviate by an angle §. A plane containing
the x’ and 9" or y axis is indicated.

With these values of & » and 6 inserted egs.
(113) become

x = (x,+1,3562,)exp(0,693¢) —
="1,3562,exp(—0,598%),

y = (9,1+06,0177z,)exp(— 0,09437) —
—6,0177z,exp(—0,5987),

z =2z,exp(—0,598).

Fig. 15 A, B illustrates the progressive defor-
mation of a cube with initial corners at (000),
(100); (110); (010); (001); (101); (111); (O11).
It is interesting to compate the shape of the cube
at time =1 with the deformed shapes after the
two sequential superpositions, Figs. 13 and 14. At
time s =1 the finite strains (1+e,), (1+e,),
(1+¢,) and y are the same as in the sequential
superposition yet, the shape produced by the
simultaneous superposition is different from either
of the two finite shapes produced by the two se-
quential superpositions of opposite order.

We shall proceed with another relative orien-
tation of the simple shear and the irrotational
strain. If the simple-shear plane is inclined to
all three axial planes in the x, y, z system at the
same time as the shear direction also deviates from
the axial planes then we have the completely
general case. This means that none of the elements
in the rotation matrix vanishes (though many are
identical since only three direction cosines in the
three-dimensional rotation matrix are indepen-
dent) and the computation becomes more cumber-
some than the added information probably war-
rants. However, if we maintain a shear plane
that is inclined to the x, y plane but let the shear
direction lie in, say, the z, x plane (Fig. 16) we
will get some interesting composite strain geo-
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metries without making the calculations excessively
complicated. The orientation specified means that
the - and y axes coincide and that the axes x
and x" and z and 2’ respectively, deviate from
one another by an angle 6. The primed coordinate
axes refer to the simple shear in the manner defi-
ned by eq. (102). The corresponding rotation
matrix to apply in order to express the coordinates
x', 9, 2 in terms of the coordinates x, y, z is now

cosfl O
[64]=| O
—sinf O cosf

sind
(114) 10

Using this rotation matrix in eq. (103) we obtain
expressions for the elements A;; in eqs. (105) and
(106). The latter then is of the form:

x

(115) y =
z
(e, —psinfcosf) O ycos26 NEA
=0 £, 0 y

—ysin26 0 (&,+ysinfcosh) ) z
The coefficient matrix in eq. (115) has the charac-
teristic equation

(116) 334+ Ax2+Bx+C=0.

Here A=¢,+¢,+¢, =0 for incompressible ma-
terials to which we limit the treatment in this
paper,

B =&, 1 éve,+é6, Tt (e —&;)psinfcost,
and

C = (£;,—€,)€,ysinfcosd — £,& ¢,

A cubic equation has generally three roots which
may be real or complex. The previous combina-
tion of irrotational strain and simple shear with
the shear plane coinciding with the x,y plane
produced only characteristic equations with real
roots (ie. real eigenvalues). The present combina-
tion of the two classes of strain with the simple
shear plane at an angle to the x, y plane has, how-
ever, characteristic equations whose roots may be
complex. That is to say the integrated form (eq.
(107)) of the rate-of-displacement equation is
sometimes periodic in the sense that the particle
paths extend around the full 360° angle.

We shall now consider numerical combinations
of &, &, &, y and 6 which give complex eigen-
values.
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To decide whether the roots of a cubic equation
is real or complex one studies the quantity

2 3
D E (_g_) +(-? )
2 3
(see e.g. Nagell 1962).

Here B and C are the coefficients in eq. (116)
in which the coefficient A vanishes. The latter
circumstance is necessary for the following condi-
tions to be valid:

(1) When D <O all three roots are real and
distinct.

(2) When D=0 two roots are coincident and
all roots are real.

(3) When D>0 there is one real and two
conjugate complex roots.

We shall focus our attention on case (3) which
implies periodic displacement of particles in the
course of progressive deformation. Before, how-
ever, presenting combinations of numerical values
of &, &, &, y and @ that give complex eigenvalues
we note that the integrated rate-of-displacement
equation (107) under such circumstances takes the
following general form:

(a) x =c1exp(xg?)+
+ (cxgcos(ﬁt) + ¢y 3sin(f2) ) exp(az),

(117) (b) y = c,1exp(e12) +
+ (cy2cos(ﬂt) + cy3sin(/3t)) exp(a?),

() z=cy1exp(xy2)+
+ (cz2cos(,8t) +¢,3sin(B2) ) exp(az).

Here 5y is the real eigenvalue, a the real part of
the two complex eigenvalues and =+ f§ their ima-
ginary parts. cy1, ¢.o etc. are coefficients partly
controlled by the initial coordinates x,, y, and z,,
partly by the eigenvectors belonging to the three
eigenvalues.

Now, at this point we shall make use of the
condition that the 3 X 3 matrix in eq. (115) is
of a special nature which permits us to extract
the eigenvalues without going through the lengthy
procedure of solving a third degree equation such
as would be necessary in the general case. We
shall presently see that the root »; = ¢, is found
by inspection and that the two other roots, which
may or may not be complex, are determined by
a second degree equation. Denoting the elements
in the matrix of eq. (115) by 4; the characteristic
equation may be written in the simple form

(118) (a11—2) (@20 — ) (ag3 —x) —

—aygagy(age —x) =0,



Bull. geol. Inst. Univ. Uppsala, N. S. 6 (1974)

because the four elements @y o, a@o1, @s3 and ag9
in the matrix of eq. (115) are all zero. One of
the roots which satisfies this equation is clearly

%1 =dgs (=g, in our special case).
Since ¢, is always real so is the root sj.

If we moreover cancel (499 — ) on either side of
the equality sign we obtain the quadratic equation

(119)
whose two roots are

(120)  y=13%(ag1taz3) L -
i\" a1 +ﬁ:::;)2‘[‘“13¢:51 —dy114d33 -

(#411—x)(ag3 —x) —ayza31 =0,

With the expressions for g; inserted the formula
for the roots is

(121)  wy=3(exte)t
+ 3V (6,—¢&,)2—4(e,—é,)psinfcosh .

These two roots or eigenvalues are complex when
the terms within the square-root sign satisfy the
condition
(122) 0 <(éy—e.) < 4ysinfcosd,

(we assume that ysinficosf is positive) in which
case the imaginary part of the roots is

(123) i = i}\ 4(ex—é;)psinfcosd — (e,—¢,)2,

and the real part

(124) a =} +ey).

Numerical example (1). — First we select the
following strain rates and angle between the shear-
plane and the x,y plane:

¢, =025, é, =005, é = —0,30,
7 =10, 6 =45°.

These values correspond to a weak lengthening
in the y direction (i.e. along the axis of rotation)
and an average shrinkage in the x, z plane.

Inserted in the formula for the eigenvalues
these data give

%1 = 0,05, o = —0,025+0,446514i,
®n3 — —0,025_0,446514Z

Before introducing the eigenvalues into the
integrated eqs. (117) we note that a number of
the coefficients in these equations vanishes. With-
out going through the argument here we can show
that ¢y, ¢,1, ¢yo and c,3 all vanish, hence the
integration yields
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x—e- 0’025’(cx2cos(0,446514t) + cxgsin(0,446514t)>,

(125) y = ¢y1€9:05¢,

z= e~ 0:025!(c,5cos(0,4465142) +c,35in(0,4465147)).

The five coefficients may be determined by the
five independent equations below which are valid
at t =0

(a) x,=¢txo,

B yo=¢y1,
(126) () 2z,=¢z9,
d) x=ay1x,+a132,= —0,25x,+0,52, =
= —0,025€x2 +0,4465146~x3,
() z=asg1x,+a332,= —0,5x,+0.22z, =
= —0,025622 "‘0,446514623

The first three equations follow directly from
eqs. (125) by simply putting ¢ =0 while the two
last ones are obtained by differentiation with
respect to ¢ of eqs. (125) and equating the result
with the original differential equation (115) in
which the relevant numerical parameters are in-
serted. The coefficients cyo, ¢y3, €52, ¢z3 and c¢,q
thus determined are inserted in eqgs. (125) to give
their numerical forms

x = (xocos(0,446514t) +(1,119786z, —
— 0,5039x0)sin(0,446514t)) (- 0,025
(127) y = y,e®0%,
— (zocos(0,4465 147) + (0,5039z, —
— 1,119786xo)sin(0,446514t)) (- 0,0250),

The particle paths as given by these equations
are spirals whose diameter decreases continuously
at the same time as they stretch out along the
y- and —y axes. Only points which originally were
on the x,z plane remain on that plane while
spiraling about origin. In Fig. 17 the general
character of the particle paths is indicated. The

27

period is = - = 14,072 units of time.

0,446514
In the course of a period the particles get closer
to the y axis — which is the axis of rotation
— by an amount determined by the factor
€-0:025:14,072 — ,-0,3518 — () 70342. For ex-
ample a particle originally at x,=1, y,=0,
2, =0 is after one period at x, = 0,70342, y, =
0, 2,=0.

Numerical example (2). — In this example we let
the strain ¢, be compressive, accordingly there
is an average expansion in the x, z plane in order
to keep the volume constant. We select the follow-
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Fig. 17. Spiraling particle path in the plane y = 0 characteristic for a certain combination of
3-dimensional strains. Described by a particle initially at x =1, 2= 0. Positions of particle
indicated at # =1, 2, 3 etc. time units. For description see text.

ing values for the strain rates and the shear-plane
inclination
£, = 0,30, ¢, = —0,05, ¢, = —0,25,
y=1, § =45°.
Calculation of corresponding eigenvalues yields

%y = —0,05, xy = +0,025+0,446514i,
%y = +0,025 —0,446514i.

Inserted in the integrated eqs. (117) these eigen-
values give the coordinates to the particle paths

(since the coefficients cy1, ¢;1, ¢y2, cy3 vanish,
see eqs. (125)):

%= 0250 (¢y5c08(0,4465142) +c5in(0,446514) ).

(128) y = ¢y e-0:05¢

2= e%025 (c,5c05(0,4465142) + ¢, 35in(0,4465141) ).

The five coefficients are determined by the same
method as in the example above, viz. from the
following equations which are valid at ¢z =0:

(2)
(b)
(129) (o)
(d)

(e)

Xo = €x25

Yo = €y1>

%o = Cz2,

X =ay1x,+ay32,= —0,20x,+ 0,52, =
= 0,025¢,5 +0,446514c¢, 3,

2= as1Xy+ag32, = —0,5x,+0,252, =
= 0,025¢,5 1 0,446514c, 3.

For explanation see eqs. (126).

With the thus determined coefficients introdu-
ced the particle-path equations read:

(a)

x = ¢0:025¢ <x0c05(0,4465 14¢) +

+ (1,11978620—0,5039x0)sin(0,446514;)),

(130) (b)
(o)

g =yee 0%,
2 = e0:025¢ (zocos(0,446514z) +

+(0,5039z,— 1,1197862,)sin(0,446514%)).
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Fig. 18. Spiraling particle path in the plane y = 0 characteristic for a certain combination of
3-dimensional strains. Described by a particle initially at x =1, z=0. Numbers on path
indicate positions at different time units after commencement of deformation. See text.

The only difference between this set of equations
and those describing the movements in the pre-
vious example is in the sign of »%; (—0,05) and
the sign of the real part of xo and x3, viz. a =
0,025.

Also in this example the particle paths are
spirals twisting around the y axis. However, now
the particles move continuously away from the y
axis at the same time as they circle about this
axis. All particles, except those lying on the x, 2
plane, also exhibit a component of movement
along the y and —y axes, getting continuously
closer to the x,z plane.

The movement trend in the x, z plane is shown
in Fig. 18.

Progressive evolution of the strain ellipsoid. —

We shall limit the discussion of the progressive
evolution of the strain ellipsoid in three dimen-
sions to the case with spiraling particle paths (i.e.
complex eigenvalues of the rate-of-displacement
matrix). In cases with real eigenvalues and hence
simple-curve type particle paths the behavior of
the strain ellipsoid differs only in degree — not
in principle — from that already studied for the
two contrasted orders of sequential superpositions.
We may expect, however, that the analysis of the
strain ellipsoid in cases with spiraling particle
paths gives nontrivial and new information.

For the above special combination of irrota-
tional three dimensional strain and simple shear
that gave spiraling particle paths the equations
for the paths (eqs. (127) p. 61) may be ex-
pressed in matrix form, thus:
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x) (@110 a3 (%)
(131) y [=[0 a2 0 Yo
z lag: 0 aga) Lz,
in which
a1 = exp(at)(cos(ﬂt)—clsin(/g’t)>
a13 = coexp(at)sin(ft)
(132) ag9 = exp(x12)
as1 = —cqoexp(at)sin(ft)
ass = exp(at)(cos(ﬂt)—I—clsin(ﬁt))
a is the real part and § the imaginary part of

the two conjugate complex eigenvalues of the
rate-of-displacement matrix and x is the real eigen-
value. ¢; and ¢y are constants.

The expressions for x,, 9, and z, which must
be inserted in the equation for the initial sphere
in order to obtain the equation for the strain
ellipsoid, follow from inversion of the matrix

above:
[ O% —dq: i
Xy A{_:_ 0 /\i E
(133) |9, |]0 a;1l 0 ¥y ol
Z, -:Ef L. o ‘Zf z

Here /\' = a4y1a33 —ai3a31. A shorter notation
for the same equations will be used in the deve-
lopment of the equation for the strain ellipsoid,

viz.
xow Bll 0 BI:’{ X
(134) |y, |= |0 Bss 0 ¥
2 By O Byy JL z

Introduction of these formulas for x,, y, and z,
into the initial sphere with unit radius yields
(135) (B2 ,+B2 )x2+B2,y2+ (B}, +B3 )22+

1
+2(B11B13+B31B3g)xz =1,

which is the equation for the distorted sphere,
ie. the strain ellipsoid. To obtain the principal
axes of the ellipsoid we follow the routine of
transforming the equation to the matrix form and
extract the eigenvalues.

(136) (x 9 2)
(B, B3 0 (31131::4‘3:;13:;:;)7[ x
0 Bz, 0 | y
(B11B13+B31By3) 0 (B3, +BZ, k&
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is the matrix form of the ellipsoid equation whose
characteristic equation is

(137) (B3,+BZ,—)(BZ,—A)(B2,+B2, —1)—
—(B11B13+B31B33)*(B3, —1) = 0.

One immediately sees that one root of this equa-
tion is

Iy =B3,.

To find the other two roots one divides by
(B2,—4) — note that (B2,—4) is not zero when
/. assumes values different from 1; — and obtain
the second degree equation

(138) (B2 ,+B2 —1)(B2,+B},—1)—

—(B11B13+B31B33)2 =0,
whose two roots are

(139) % =#(B2, +B2,+B?,+B2 )+

1

+ ((By1Bus +Bs1Bys)2 — (B2, + B2, ) (B2, +

+B3,)t+4(B3, +B}, +B2 +B,)2 )*5‘

For any specified case with defined strain rates
€y, €y, €; and ¢ and defined angle § between the

Fig. 19. The cross section in the x, z plane of the strain
ellipsoid shown at £=1, 3, 6 and 7,036 units of time
after the commencement of progressive 3-dimensional
strain of the kind also shown in Figs. 17 and 20.
The outermost stipled circular curve outlines the size of
the initial sphere from which the strain ellipsoid forms.
The innermost stipled circular curve shows the size of
the principal cross sections in the x, z plane of the strain
ellipsoid at # = 7,036. For explanation see also text.
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Fig. 20. Pattern showing orientation and length of two principal axes of strain ellipsoids formed
during progressive composite 3-dimensional strain of the kind described in text. At #=0 the
strain commences and the starting points of the two spiraling curves cut off the same length
of the x and the y axes. This length is the radius of the initial sphere which continuously
deforms to the strain ellipsoid. The two spiraling curves starting at # =0, one on the x axis,
the other on the y axis, give the length and orientation of two of the principal strain axes at
any time (up to 30 time units in the figure) after the straining has started. At z = 3, for example,
the two principal axes coincide with the two radii which meet the two spirals at # = 3. These
two radii are normal to one another — as is true with all pairs of radii with the same number
— and one sees that the long principal axis lies in the first (and third) quadrant and the
short principal axis lies in the fourth (and second) quadrant. At #~— 7 units of time the
principal axes coincide in direction with the axes developed at the very beginning of the de-
formation. The axes are now, however, shorter than initially, and both are equal in length.
At ¢t =~ 7 units of time the strain ellipsoid is hence bi-axial with the axis of rotational symmetry,
which is the longer one, being parallel to the coordinate y axis.

x axis and the simple-shear direction, the elements
a;; in the matrix of eqgs. (132) and consequently
also the coefficients B;; in eq. (139) are functions
of ¢ only. Consequently the roots of eq. (138) —
ie. the eigenvalues of the matrix of the strain-
ellipsoid equation — and thus the lengths and
orientations of the principal strain axes are func-
tions of the time of evolution.

The numerical example 1 treated above has

the following parameters needed for numerical
calculation of the strain ellipsoid

a= —0,025, 8 =0,446514,
¢1 =0,5039 and ¢y, = 1,119786.

These values go via the elements #; of eq. (132)
into the coefficients B;; of formula (139) for the
eigenvalues.

The eigenvalues and the length and orienta-
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tion of the axes of the strain ellipsoid have been
calculated for a sequence of times as shown in
Figs. 19 and 20. We note that the long axes
(parallel to y) increases continuously while the
short and intermediate axes exhibit alternating
shortening and lengthening at the same time as
they rotate around the clock. To balance the
continuous lengthening of the long axis the
product of the intermediate and the short axes
decreases continuously while they rotate and
pulsate. Each time the short and intermediate axes
return to and pass a given angular position they
have become shortened. This is demonstrated in
Fig. 20.

Appendix

In the discussion throughout this paper we
have selected only examples in which neither the
rates of strain, ¢ and y, nor the angular deviation,
6, between the simple shear direction and the
principal axes of the irrotational part of the
strain have varied with time and/or with posi-
tion in space.

The reason for this limitation is not that
constant strain rate is particularly applicable to
natural rocks but rather that the elements of the
matrix of the rate-of-displacement equations there-
by become independent of time and space and
we accordingly obtain a system of differential
equations with constant coefficients. Such systems
of differential equations are easy to integrate to
generate the particle-path equations which consti-
tutes the basis for the study of progressive de-
formation in systems undergoing strain such as
deforming rocks. Our equations would be more
applicable to conditions encountered in nature
if they also would account for strain rates which
vary with time and/or position in space.

Generally the integration of rate-of-displace-
ment equation with variable coefficients — i.e.
the generation of the corresponding particle-path
equations — offers a difficult mathematical pro-
blem.

Under certain circumstances, however, systems
of differential equations of the type examplified
by the rate-of-displacement equations in this
paper may readily by integrated even if the
coefficients are not constant but are functions of
time. Integration offers no special problem if each
of the coefficients can be considered as a pro-
duct of a constant and a time function, say f(2),
provided that the function f(z) is the same for all
coefficients. This condition allows us to consider
some cases in which the rate of strain changes
with time.
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As a plane-strain example assume that the
straining starts at constant rates &y, €, and y at
time # =0, but then increases with time as, say,
the function f(#) =In(e+¢). This function is
unity at # = 0 and increases firstly moderately fast
with time and then more and more slowly.

Introduction of the factor In(e—+#) in, say, eq.
(30) p. 40 yields

(a) [x ] {Aln(e—l—t) Bln(e—l—t)\{x 1
(b)

where we have used the notation:

(140) =
5 (Dln(e+2) Eln(e+2) J( y

A = &,— ysinfcosd
B = jcos26

D = — ysin?26

E = &,+ ysinfcosh.

(141)

The solution of this system is

(@) x=rcyiexp[syfIn(e+2)ds]+
+cioexp[as [In(e+12)ds],

(b)  y=corexpliy fIn(e+2)ds] +
+conexp[xs fln(e+2)dr].

Here %, and xo are the eigenvalues of the matrix

(142)

&y — ysinfcosf ycos26 ] A B)

L —7sin20 éy -+ ysinfcosh J— \D E

and ¢;; are coefficients partly determined by the
initial coordinates of the point we wish to follow.

Since solutions of type (142) are not quite
obvious and furthermore are not found in many
books on applied mathematics we shall show that
the solution is correct. If solution (142) is true
then the differentiated form

(143) x =cy131ln(e+2)exp[s1 fln(e+12)ds] +
+cq 2x21n(e+t)exp[x2fln(e+t)dt]

must be identical to (140a):
(144) x = Aln(e+#)x+ Bln(e+1)y.
It is now practical to rewrite eq. (143) thus

(145)
x= Aln(e+t)(cl 1exp[sy fIn(e+2)ds] +
+€126XP[%2f1ﬂ(€+f)df])+
+ (51 — A)In(e+1)cq 1exp[xq fIn(e+2)ds] +
+ (e — A)In(et#)cq2exp[a fIn(e+2)de],
where the long term in the second parenthesis is

the expression for x as given in equation 142 a.
Consequently the expression
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(146) (37 —A)ln(e+2)cyyexp[sy fIn(e+2)ds] +
4 (2 — A)In(e+ 1) ¢y sexp o [ln(e+2)dz]

in eq. (145) must be identically equal to

(147) Bln(e+ 1)y,

or — with the expression for y from eq. (142 b)
introduced — identical tc

(148) Bln(e+1)

(62 1exp[x fln(e+#)ds] +¢, 2exp[x2f1n(e+t)dt]).

It follows that

(a)  (x1—A)In(e+2)cy1 = Bln(e+12)ca1
(149) and
(b) (39— A)ln(e+1)c12 = Bln(e+1)cas.

Hence

B
(a) c11/¢21 =~
11 1 i
(150) and
B
(b) 52/6 = .
1 22 o

That is the ratio between the coefficients ¢y
and ¢yq equals the ratio between the components
of the first eigenvector of the matrix

[A B

LDE=

and ¢y and coq are related as the components of
the second eigenvector to the same matrix. Note
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that the factor In(e+¢) in the matrix of the rate-
of-displacement equations does not influence the
ratio between the coefficients in the integrated
equation.

The other two equations needed to determine
completely the form of the coefficients ¢;; follow
by putting x =x, and y =9y, at t=0 in eqs.
(142). Before this can be done, however, we must
integrate the term In(e+7)ds in the exponent.
This integral is (z+e)ln(e+7) —¢. Inserting this
integral in eq. (142) and putting x =x, and
Yy =19, at the same time as =0 yield

(151) (a) X, = c11€%1°+ 106726,
(b)

Yo = {7216%19"_6228%26.

Equations (150) and (151) allow us to determine
the four coefficients in the particle-path equations.
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