A REVISION OF
THE CLASSIFICATION OF THE PLESIOSAURIA
WITH A SYNOPSIS OF THE STRATIGRAPHICAL
AND GEOGRAPHICAL DISTRIBUTION
OF THE GROUP

BY

PER OVE PERSSON

LUND
C.W.K. GLEERUP
Read before the Royal Physiographic Society, February 13, 1963.
1. Introduction

The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by Kuhn (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geographical distribution of the group. Some of the species are discussed in the text (pp. 17—22). The synopsis is completed with seven maps (figs. 2—8, pp. 10—16), a selective synonym list (pp. 41—42), and a list of rejected species (pp. 42—43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned (“Non-Plesiosaurians”, p. 43). — The numerals in brackets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order.

The author has examined all material available from Sweden, Australia and Spitzbergen (Persson 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German specimens; certain specimens from New Zealand, now in the British Museum (see Lydekker 1889, pp. 188; 215—217; 220—221); and casts of some of the South American specimens. For the rest, the revision and the synopsis are based upon information gathered from the literature.

2. Discussion of the classification

Welles (1943, pp. 196—198) gave a brief review of the classifications proposed by previous authors, from Owen (1840) to White (1940). He also listed and discussed the characters available for observation (ibid., pp. 197—201), and suggested a new classification (ibid., p. 212; quoted below).

Suborder PLESIOSAURIA
Superfamily Pliosauroidea (=Brachydeira; short neck, long head, long ischia, pendulous propodials)
Family Pliosauridae (diceranopleurous, long epipodials, Jurassic)

1 Travelling scholarships generously awarded by the Royal Physiographic Society, Lund, have enabled me to visit the principal paleontological museums in Australia, Belgium, England and France, and the Directors of the museums have kindly permitted me to examine the Plesiosaurian material in their keeping.
Family Polycotylidae (cercidopleurous, short epipodials, Cretaceous)
Superfamily Plesiosauroida (= Dolichodeira; long neck, short head, short ischia, stocky propodials)
Family Plesiosauridae (dicranopleurous, long epipodials, Jurassic)
Family Elasmosauridae (cercidopleurous, short epipodials, Upper Jurassic and Cretaceous)

This classification, being based upon several different characters, is certainly more appropriate than any of the older ones, and has been adopted by most recent authors, among others Romer in earlier works (1953 etc.) and Saint-Seine in Piveteau (1955). However, in its original formulation it has certain disadvantages. Hence, too much importance is attached to the shape of the cervical rib heads and of the epipodial bones, characters in these elements being regarded as the essential factors distinguishing the Pliosauridae from the Polycotylidae, and the Plesiosauridae from the Elasmosauridae. A consequence of this valuation of the characters mentioned is, that on strict application of Welles’s classification certain genera should be placed within the Polycotylidae or the Elasmosauridae, although most of their known features are typically Pliosauridean or Plesiosauridean. Examples of such genera are Kronosaurus [311] (Pliosauridae), Cymothoides [23, 24, 25, 197, 203, ?204], Muraenosaurus [20, 26, 27, 99, 100, 102, 197, 198, 199, 200, 201, 202, ?272], Picrocleidus [28] and Tricleidus [31, 228, ?274] (Plesiosauridae). These forms are cercidopleurous and have short epipodial bones. In consequence, Kronosaurus should belong to the Polycotylidae and the other genera mentioned to the Elasmosauridae. However, with regard to the characters in the skull, vertebral column, girdle bones etc. Kronosaurus is a Pliosaurid, and the other forms are Plesiosaurids. As a matter of fact, Welles himself did not follow his scheme strictly, but grouped Kronosaurus with the Pliosauridae and the other genera with the Plesiosauridae (Welles 1943, p. 203, fig. 37).

Romer (1956, pp. 665—668) followed Welles on essential points, but included the Pistosauroidea in the sub-order (see below, p. 7). To the original scheme he also added the families Rhomaleosauridae (Thaumatosauridae1) and Leptocleididae (the latter name was originally introduced by White, 1940, p. 465). According to Romer the Rhomaleosauridae belong to the Plesiosauroida and the Leptocleididae to the Pliosauridae. As will be demonstrated below (pp. 7—8 and 19) the Leptocleididae probably should be included in the Rhomaleosauridae, and the correct place for the latter family is certainly the Pliosauroida, not the Plesiosauroida.

Kuhn (1961, pp. 75—77) adopted, with some modifications, the classification given by White (1940, pp. 459—466). This is essentially based upon two complexes of characters, viz. 1.) the length — breadth relations of the skull, and 2.) details in the pectoral girdle (presence or absence of the interclavicle and of the pectoral bar, etc.;

1 Romer used the name Thaumatosauridae for the family in question. However, since the genotype of Thaumatosaurus [144] cannot be defined (Tarlo 1960, p. 178), the family name mentioned was replaced by Kuhn (1961, p. 76) with Rhomaleosauridae. The latter name is used in the present paper.
A revision of the classification of the Plesiosauroidea

see White 1940, p. 460). However, Welles (1943, pp. 197—198) and other authors have demonstrated that most of the characters used by White are of questionable value, some of them being more or less dependent upon the state of preservation and others upon the ontogenetic stages.

During the last decades new material of certain mesodiran forms has been investigated, and previously described specimens of such forms have been reviewed (Cabrera 1941, pp. 113—130; Persson 1959, pp. 447—459; 1960, pp. 6—11; 1962, pp. 144—145). By these studies the existence of a group of mesodiran genera within the Plesiosauroidea has been proved, and the group in question was defined by the present writer as the family Cimoliasauridae (Persson 1960, pp. 6—7). Unfortunately I was at that time unaware of the fact that Delair had introduced the Cimoliasauridae already in 1959, though as a provisional family without an accurate diagnosis. Delair (1959, pp. 59—60) wrote as follows: “This family is very provisional and embraces many inadequately known forms of problematic affinities. Due to this it is very probable that the term Cimoliosauridae should be employed in a much more restricted sense than at present. However, it is convenient to have a family term under which to group poorly known species, and Plesiosaurian species defying accurate classification are relatively numerous in the late Jurassic vertebrate faunas, hence the retention in its present scope of the term Cimoliosauridae to receive them.

The family genus is Cimoliosaurus, a form described from American material by Leidy in 1851.

The type species of Cimoliosaurus, C. magnus Leidy 1851 [280], is based upon adequate material (Welles 1952, p. 108), and a number of related forms are described. The definition of the Cimoliasauridae given by the present writer (Persson 1960, pp. 6—7, and below, p. 7) may hence be well justified; and certainly a clearly defined taxonomic unit is more useful than a “catch-all” group.

At the present stage of our knowledge of the Plesiosaurians the following classification may be most adequate:

The same diagnosis as for the family Pistosauridae (see below).

Family Pistosauridae Baur in Zittel 1889.

Pre-orbital part of the skull long and slender. Vestigial nasals present. Long temporal region. Premaxillae not extending between the nasals. Parietal foramen more

1 In the present paper the term mesodiran is used for forms in which the neck is relatively longer than in typical Pliosaurids or Polycotylids, but shorter than what is generally the case in the Plesiosaurids or the Elasmosaurids. In a typical mesodiran the length of the neck is about twice the length of the head.

2 Like Lydekker and several other authors Delair used the transcription Cimoliosaurus in the name of the type genus, and in consequence he spelled the family name Cimoliosauridae. However, Leidy wrote Cimoliasaurus in his original description of the genus mentioned (see Leidy 1851). The correct original spelling should be used.
posteriorly placed than in typical Plesiosaurians. Squamosals not in contact behind temporal fenestra.

The only known representative of this family is *Pistosaurus*. — Middle Triassic.

Super-family **Pliosauridea** Welles 1943.

Brachydiran or mesodiran forms with large heads. Pre-orbital part of the skull more or less elongate. Long mandibular symphysis. Tooth crowns large and stout, with sharp apico-basal ridges. The end faces of the vertebral centra usually strongly concave. Cervical centra short and high. Cretaceous forms cercidopleurous, older forms dicranopleurous. Pubes and ischia elongate. Femur larger than humerus. Epipodial bones longer than broad (?Triassic and Jurassic forms), or broader than long (Cretaceous forms).

Family **Rhomaleosauridae** Kuhn 1961 (Brancasauridae White 1940; Thaumatosauridae Auct., Romer 1956 partim)

Mesodiran forms. Pre-orbital part of the skull slightly elongate, with a more or less distinct constriction at the maxillo-premaxillary suture. 20—27 cervical vertebrae. — Upper Triassic — ?Upper Cretaceous.

Family **Pliosauridae** Seeley 1874 emend. Tarlo 1960.

Family **Polycotylidae** Williston 1908.

Super-family **Plesiosauridea** Welles 1943.

Dolichodiran or mesodiran forms with small heads. Pre-orbital part of the skull not elongate. No distinct constriction at the maxillo-premaxillary suture. Short mandibular symphysis. Tooth crowns high and slender, with fine apico-basal ridges.

1 White (1940, p. 461) included *Rhomaleosaurus* Seeley 1874 (?46, 59, 60, 62, ?65, ?112, ?113, 154) (*Thaumatosaurus* H. v. Meyer 1841; see footnote 1, p. 4) in the Brancasauridae. The other two genera which White referred to the family mentioned are *Brancasaurus* Wegner 1914 [85] and *Seeleyosaurus* White 1940 (the latter is probably a synonym of *Plesiosaurus guilelmi imperatoris* Dames 1895 [147]; see below, p. 21). These are both definitely of Plesiosauroidean type, and are here grouped within the Plesiosauridae.
A revision of the classification of the Plesiosauria

Triassic and Lower Jurassic forms dicranopleurous, younger forms cercidopleurous. Pubes and ischia short. Humerus as large as femur, or larger. Epipodial bones longer than broad (Triassic and Lower Jurassic forms), or broader than long (most of the younger forms).

Family Plesiosauridae Gray 1825.

Mesodiran forms. Head comparatively large.¹ The height of the cervical centra approximately equal to the length, but the breadth of these centra considerably greater than the length. The end faces of the centra almost flat. Cercidopleurous. Pubes sub-rounded. Propodial bones short and stout. — Cretaceous.

Family Elasmosauridae Cope 1869.

The distribution of the genera upon the different families should be clear from the tabular synopsis (pp. 23—40). The assumed phylogenetic relations within the sub-order are shown in fig. 1 (p. 9).

The two main evolutionary lines in the Plesiosauria, taxonomically termed the Pliosauroidea and the Plesiosauroidea respectively (see fig. 1), must have diverged even before the beginning of the known history of the group. The oldest known Pliosauroideans all belong to the Rhomaleosauridae. Although some of these forms are fairly long-necked their general Pliosauroidean features (relatively large head, strong teeth, more or less oblongate pubes and ischia, etc.) are clearly shown, separating them definitely from the contemporaneous Plesiosauroideans, then re-

¹ See below, p. 17, Aristonectes parvidens.
² In Morenosaurus [288]; the number is an estimation (see Welles 1952, p. 100).
presented by the Plesiosauridae only. The Rhomaleosauridae were a rather far-ranging family; if “Cimoliasaurus” andium Deecke 1895 [296] or “Plesiosaurus” balticus Schröder 1885 [171, ?186] (see below, pp. 18 and 20) should prove definitely to be Rhomaleosaurids the family mentioned persisted almost until the end of the Plesiosaurian history.

The earliest known representatives of the Pliosauridae appeared in the U. Jurassic. Their ancestors may have been large-headed Rhomaleosaurids, possibly forms like Rhomaleosaurus [?46, 59, 60, 62, ?65, ?112, ?113, 154] or Macroplata [64, 70]. In this relatively short-lived family there was a tendency of gigantism, culminating in such forms as Pliosaurus [33, 34, 39, 40, ?44, ?45, 105, 206, 207, 208, 214] and Kronosaurus [311].

Tarlo (1960) revised and discussed profoundly the U. Jurassic Pliosaurids. Where these forms are concerned the tabular synopsis (below, pp. 23—40) is essentially based upon Tarlo’s excellent work.

The Polycotylidae form the top of the Pliosauroidean evolutionary line. The group embraces highly specialized forms, and though it has many of its general characteristics in common with the Pliosauridae, its rank of family seems to be well justified. — The Polycotylidae are known from the Cretaceous only.

Williston (1925, p. 251) placed the relatively short-headed and extremely shortnecked Brachauchenius [253] in a family of its own, the Brachaucheniiidae. Until more is known about the genus mentioned it seems more appropriate to include it in the Polycotylidae.

The Plesiosauridae is a somewhat heterogenous family, including forms as different from each other as for example the comparatively generalized Plesiosaurus dolichodeirus Conybeare 1824 [55, ?118, 149, ?150] and the specialized Cryptocleidus oxoniensis (Phillips 1871) [24]. However, since the general family characters are present in all the sufficiently known genera, there is no reason to divide the family into smaller units.

The Plesiosauridae reached the Lower Cretaceous with a few forms, most of which are poorly known (see the tabular synopsis, [5, 6, 85, 86, 87, 88, 89, 137, 138, 226]).

The families Cimoliasauridae (see above, p. 5) and Elasmosauridae seem to have evolved from Plesiosauridean ancestors in late Jurassic or early Cretaceous times. Judging from details in the shape of their premaxillaries, teeth, vertebrae, pubes and propodial bones, the two families mentioned are closely related to each other (Cabrera 1941, pp. 114—129; Persson 1959, pp. 448—458; 1960, pp. 6—11; 1962, pp. 144—145). However, they have followed divergent lines of evolution, the Cimoliasauridae being mesodiran and the Elasmosauridae extremely dolichodiran.

The earliest known representatives of the two families are of L. Cretaceous age. In the U. Cretaceous the families in question probably were the only surviving Plesiosauroideans.

The American Elasmosaurids were revised by Welles (1943 and 1952); in his work of 1952 Welles also gave a valuable bibliography of the Elasmosauridae, and of the Plesiosaurians in general.
A revision of the classification of the Plesiosauria

Fig. 1. The assumed phylogenetic relationship within the sub-order Plesiosauria. (The Pliosauroidea are not here taken into consideration).

The maps, figs. 2—8 (pp. 10—16) show the geographical and stratigraphical distribution of the known finds of Plesiosaurian remains. As may be readily gathered from the maps, each of the families had a period of global, or nearly global extension. Finds of Maestrichtian age are comparatively rare (see fig. 8, p. 16), and at the end of that period the Plesiosaurians were probably entirely extinct.
Fig. 2. The distribution of the Plesiosaurs. Lias. Paleo-geographic land-contours modified from Termier, H., and Termier, G. (1952, map no. 21).—Key to the signs: ○ Plesiosauridae; ⊙ Cimoliasauridae; ♦ Elasmosauridae; △ Rhomaleosauridae; □ Plesiosauridae; ■ Polycotylidae; X Plesiosauria, fam., gen. et sp. indet.; ——supposed ancient coastal line on present land; ———supposed ancient coastal line in present sea.
Fig. 3. The distribution of the Plesiosaurians. Callovian—Oxfordian. Palaeogeographic land contours modified from TERMIER, H., and TERMIER, G. (1952, map no. 23). — Key to the signs, see fig. 2.
Fig. 4. The distribution of the Plesiosaurians. Kimmeridgian — Portlandian. Paleo-geographic land-contours modified from Termier, H., and Termier, G. (1952, map no. 24). — Key to the signs, see fig. 2.
Fig. 5. The distribution of the Plesiosaurians. Neocomian - L. Albian. Paleo-geographic land-contours modified from Terrier, H., and Terrier, G. (1932, map no. 26). — Key to the signs, see fig. 2.
Fig. 6. The distribution of the Plesiosaurs U. Albian - Cenomanian. Paleo-geographic land-contours modified from Terrier, H., and Terrier, G. (1952, map no. 27). — Key to the signs, see fig. 2.
Fig. 7. The distribution of the Plesiosaurians. Santonian – Campanian. Palaeogeographic land-contours modified from Terrier, H., and Terrier, G. (1952, map no. 28). — Key to the signs, see fig. 2.
Fig. 8. The distribution of the Plesiosaurians, Maestrichtian. Paleo-geographic land-contours modified from Termier, H., and Termier, G. (1952, map no. 29). — Key to the signs, see fig. 2.
3. Notes on selected genera and species

Aristonectes Cabrera 1941. — This genus shows typically Cimoliasauridean features; unfortunately I had not access to Cabrera’s work when I wrote my definition of the Cimoliasauridae (Persson 1960, pp. 6–7), and hence _Aristonectes_ was not mentioned among the genera of that family. — The genotype and only known species is _A. parvidens_ [293]. This is so far the only Cimoliasaurid in which parts of the head skeleton are known (portions of the skull and mandible; see fig. 9). The skull is large (length 70 cm+); the teeth are relatively small and numerous. Apparently the dentition was fairly specialized. The length-height-breadth ratios of the cervical centra agree closely with those of the corresponding centra in certain specimens of the Cimoliasaurid _Scanisaurus cf. nazareni_ (BoGolubov 1911) [168] (see Persson 1959, pp. 452–453).

Aristonectes is, according to Cabrera, of Maestrichtian age. If this is so, the genus in question must have been one of the latest off-shoots of the Cimoliasauridae, and of the Plesiosauria in general.

Brancasaurus Wegner 1914 — _B. brancai_ [85], the only known representative of this genus, seems to be an “advanced Plesiosaurid”. The number of the cervical vertebrae and the indices of their centra are definitely Plesiosauridean, and so is the shape of the propodial bones. However, if Wegner’s reconstruction is correct, the coracoids are separated posteriorly and are hence of the Elasmoceloid type.

White (1940, p. 461) placed _Brancasaurus_ within a family of its own, the Brancasauridae; Welles (1943, p. 203) referred the species to the Elasmosauridae; and Romer (1956, p. 666) placed it with his Thaumatosauridae (Rhomaleosauridae Kuhn 1961; see footnote 1, p. 4). With regard to the facts that the Plesiosauridean characters are prevalent at least in the vertebral column, and that Wegner’s reconstruction of the pectoral girdle is somewhat doubtful, it seems most appropriate to place _Brancasaurus_ with the Plesiosauridae.

© 1959. All Rights Reserved.
Brimonosaurus Leidy 1854. — The genus and the only species, B. grandis [247], are based upon a very scanty material (four cervical centra). — Welles (1952, p. 112) recorded the genus and species among his nomina vana, but demonstrated that the form in question is probably closely related to Cimoliasaurus. In the present paper it is therefore referred to the Cimoliasauridae, gen. et sp. indet.

Cimoliasaurus Leidy 1851 [4, 84, 280, 294, 305, 316; "Cimoliasaurus" 9, 15, 98, 126, 130, 131, 132, 145, 188, 189, 191, 296]. — This genus and its type species, C. magnus [280], have been thoroughly discussed by Welles (1943, p. 209; 1952, pp. 107—110); see also Persson (1959, pp. 447—448; 1960, p. 7).

"Cimoliasaurus" andium Deecke 1895 [296]. — The length-height-breadth ratios of the cervical vertebrae in this species are Romaleosauridean rather than Cimoliasauridean. Deecke’s description of the material is not quite unambiguous. In the text he referred a humerus to Cimoliasaurus without stating a specific name for it, but in the figure-text he named the same specimen C. andium (Deecke 1895, pp. 58—60; Pl. 1, fig. 6a—c). It is not stated expressly that this bone belongs to the same individual as the vertebrae. I have seen a cast of the humerus, which is definitely of Cimoliasauridean or Elasmosauridean type. Because of the shape of its cervical centra “C.” andium is here referred to the Romaleosauridae, but future finds will perhaps prove that we are here dealing with a Cimoliasaurid in which the cervical centra are higher and narrower than in the typical representatives of the Cimoliasauridae.

"Cimoliasaurus" cantabrigiensis Lydekker 1889 [9]. — This poorly-known species is very similar to, and possibly identical with “Plesiosaurus” bernardi Owen 1850 [10, ?170, ?187] (see below, p. 20). Like the species just mentioned it is here referred to the Romaleosauridae.

Cimoliasaurus sp. [294]. — The immature cervical centrum described and figured by Deecke (1895, pp. 61—63; Pl. 1, fig. 5) under this name has typically Cimoliasauridean proportions. It is very similar to the posterior cervical centra in Scaniusaurus cf. nazawowi (Bogolubov 1911) [168] (see Persson 1959, pp. 451—456).

Colymbosaurus sclerodirus Bogolubov 1911 [194]. — Judging from Bogolubov’s description and figures the holotype of this species can hardly show any clearly specific characters, but since I have not seen the material I consider a provisional retention of the species preferable.

Elasmosaurus constrictus (Owen 1850 [1]. — The best preserved of the two cervical centra which are the type material of this species has a length-height-breadth ratio which is definitely Elasmosauridean; furthermore, a sharp lateral longitudinal ridge is present. Apparently we are here dealing with an Elasmosaurid, but the material is not sufficient for a generic or specific definition.

“Elasmosaurus” intermedius Cope 1894 [260]. — Following Welles (1952, pp. 114—115) I have placed this species among the Polycotylidae. However, the indices
of the vertebral centra would not contradict an assumption that the species belongs to the Rhomaleosauridae.

Elasmosaurus? kurskensis [177], *E. orskensis* [175] and *E.? serdobensis* [176]. — These three Russian species are based by Bogolubov (1911) upon very poor material. They are probably Elasmosaurids, but their generic and specific definition is questionable. However, since I have not seen the holotypes I prefer to group the forms, provisionally at least, among the valid species.

Eretmosaurus Seeley 1874 [61, 66, 74, ?157]. — The genotype, *E. rugosus* (Owen 1840) [66, 74] was based upon a skeleton lacking skull and mandible, but otherwise almost complete. The neck is relatively long, hence indicating a Plesiosauroid, but the girdle bones, particularly the ischia, are clearly of the Rhomaleosauridean type. The genus is here referred to the Rhomaleosauridae.

The other known species of this genus, *E. (Plesiosaurus) dubius* (Blake 1876) [61], is quite inadequately described (Tate and Blake 1876, p. 246). The holotype, a nearly complete skeleton which was in private possession, cannot now be found. — Watson (1911, p. 2) established that the pectoral girdle figured by Blake (1876, Pl. 1, fig. 7) is of the same type as the corresponding element in *Eretmosaurus*, and hence he referred Blake’s “*Plesiosaurus*” dubius to the genus mentioned.

Leptocleidus Andrews 1922 [11, 222] (the type genus of the family Leptocleididae White 1940; see above, p. 4). — The cervical vertebrae of the genotype, *L. superstes* [11], show certain typical Rhomaleosauridean characters (centra relatively short and high; end faces deeply concave, with rounded-off margins). Andrews (1922, pp. 291—295) demonstrated that the pectoral girdle agrees on important points with that of the liassic Rhomaleosaurid *Eurycleidus arcuatus* (Owen 1840) [71]. The genus *Leptocleidus* is hence here referred to the Rhomaleosauridae. — Andrews further demonstrated that *L. superstes* and the South African species “*Plesiosaurus*” *capensis* Andrews 1911 [222] are probably congeneric. This being so, the generic name *Peyerus*, introduced by Stromer (1935, p. 44) for the African form mentioned, has no bearing. The species in question is therefore here referred to *Leptocleidus*. — In *L. capensis* the skull is well preserved. This is comparatively large, and there is a distinct constriction at the maxillo-premaxillary suture. The presence of these characteristics supports the assumption that *Leptocleidus* is a Rhomaleosauridean genus.

Mauisaurus Hector 1874 [3, 313, ?318]. — The material upon which the genotype, *M. haasti* [313], was based is fairly poor, but shows definitely Elasmosauridean characters. — *M. gardneri* Seeley 1877 [3] is represented by the major part of a skeleton. This species was a large Elasmosaurid.

Microcleidus Watson 1911 [50, 51, 115, ?116]. — This genus is very long-necked and small-headed. The number of cervical vertebrae is not extremely great — 40 in the type species, *M. homalospondylus* (Owen 1865) [50, ?115, ?116] — but the centra of these vertebrae are very long, their length-height-breadth ratios being nearly the
same as in the corresponding centra in certain Elasmosaurids. Lateral longitudinal ridges are present in the anterior cervical centra. Also the pectoral and pelvic girdles show certain Elasmosauridean features (Watson 1911, pp. 5—12). — An important non-Elasmosauridean character in Microcleidus is the absence of an interclavicle. Nevertheless, the genus discussed may be a conceivable ancestor of the Elasmosaurids.

Muraenosaurus elasmosauroides Bogolubov 1911 [197], *M. fahrenkohli* (Waldheim 1846) [198] and *M. purbecki* Bogolubov 1911 [199]. — The validity of these species is questionable, and their retention is provisional.

“*Plesiosaurus*” balticus Schröder 1885 [171, ?186]. — Schröder (1885, p. 309) originally grouped this species among what he called “the short-necked Plesiosaurians”, essentially because of the shape of its vertebral centra. The species is probably a Pliosauroid, although its humerus shows certain Plesiosauroid characteristics. The shape of the teeth indicates a Rhomaleosaurid rather than a Pliosaur or a Polycotylid, and the species is therefore here referred to the Rhomaleosauridae.

“*Plesiosaurus*” bernardi Owen 1850 [10, ?170, ?187]. — This species is known from a few vertebrae only. The end faces of the centra are deeply concave and have rounded-off margins. The height of the cervical centra is a little greater than the length, and in some cases greater than the breadth as well. The rib facets are unusually large.

The species can hardly belong to any of the Plesiosauroid families, and probably it does not belong to the Pliosauridae or the Polycotylidae either. It is therefore here referred to the Rhomaleosauridae.

“*Cimoliasaurus*” cantabrigiensis” [9] (see above, p. 18) is probably closely related to (or identical with) “*P*. bernardi.”

“*Plesiosaurus*” conybeari Sollas 1881 [52]. — The proportions of the skull, the shape of the teeth and the length of the mandibular symphysis in this species are Rhomaleosauridean rather than Plesiosauroid. On the other hand, the species is clearly dolichodiran, and the ischia are not elongate (see Sollas 1881, Pl. 23; *ibid.* text-fig. 6, p. 464). I have therefore here tentatively grouped “*P*. conybeari” among
The holotype and only known specimen of "P". conybeari (a nearly complete skeleton in the Bristol City Museum) was destroyed by enemy action in November, 1940.

"Plesiosaurus" costatus Owen 1840 [75, 123], "P". hawkinsi Owen 1840 [73, 76], "P". macrocephalus Conybeare 1824 [67, 72], and "P". rostratus Owen 1865 [68]. — These species are Rhomaleosaurids, and hence they cannot belong to the genus Plesiosaurus. "P". macrocephalus and "P". rostratus should probably be referred to Rhomaleosaurus.

"Plesiosaurus" holmesi Hector 1874 [314] and "P". hoodi Owen 1870 [315]. — Both species show certain Elasmosauridean characters, and are here referred to the Elasmosauridae, gen. et sp. indet. They are based upon very poor material. Possibly they are identical with each other, and (or) with Mauisaurus haasti [313] (see above, p. 19).

"Plesiosaurus" mauretanicus Arambourg 1954 [224]. — The material is insufficient for a generic or specific identification. The proportions of the hindmost cervical centra indicate an Elasmosaurid.

"Pliosaurus" chilensis GerVAIS in Gay 1848 [295]. — The species is founded upon insufficient material (a single caudal vertebra); hence a generic or specific definition is impossible. However, the type specimen is obviously a Pliosauriod (COLBERT 1949, p. 18).

Most of the material which Deecke (1895, pp. 36—50) referred to P. chilensis is non-Pliosaurioan (see Colbert 1949, pp. 17—19). Only some cervical vertebrae in the material mentioned can belong to the same form as the type specimen.

"P". chilensis is here provisionally grouped among the Polycotylidae, gen. et sp. indet.

Polycotylus brevispondylus [182], P. epigurgitis [183], P. ichthyospondylus var. tanais [184], P. orientalis [180] and P. ultimus [181]. — Bogolubov (1911) founded these species upon a very scanty material, and their validity is not certain, but since I have not seen the holotypes I have here grouped the forms provisionally among the valid species.

Seeleyosaurus White 1940. — White (1940, p. 463) founded the type species of this genus, S. holzmadenensis, upon a juvenile skeleton previously described by Fraas (1910, pp. 107—123), who considered the specimen as a representative of Plesiosaurus guilelmi imperatoris Dames 1895 [147]. As emphasized by Welles (1943, pp. 197—198) the distinctive features adduced by White (certain characters in the skull and the pectoral girdle) are of questionable value. S. holzmadenensis is here regarded as a synonym of P. guilelmi imperatoris.

Termatosaurus alberti TH. PLIENINGER 1844 [77, 156]. — This Rhomaleosauridean species is based upon teeth only. Brown (1894, pp. 748—749) considered T. alberti and "Plesiosaurus" rostratus Owen 1865 [68] as synonyms. However, the
synonymy seems to be extremely doubtful, and is hence not adopted in the present paper.

Woolungasaurus PERSSON 1960 [?298, 299, 300]. — In certain respects this genus seems to be intermediate between the Plesiosauridae and the Elasmosauridae, though the Elasmosauridean characters are clearly prevalent (PERSSON 1960, pp. 15—16).

Undescribed Plesiosauridean specimens from the Island of Eigg [32]. — This material has a particular interest, being the only Plesiosaurian remains from the British Isles outside England. Some of the specimens, which I have seen, are undoubtedly of the Plesiosauridean type. — I am indebted to the collector of the fossils, Dr. B. H. NEWMAN, of the British Museum, London, for the following account:

“In July 1844 the celebrated geologist HUGH MILLER visited the Island of Eigg, one of the Inner Hebrides off the west coast of Scotland. At the north end of the island, at a promontory called Ru-Stoir, he discovered reptilian and fish remains in loose blocks of limestone strewn along the foreshore (MILLER 1858, p. 75). He again visited Eigg in the summer of 1845 and found the reptile bed *in situ* on the foreshore at a point on the east coast about one and a half miles north of Kildonan Cottage (*Ibid.*, p. 222). The fossils collected during these two visits are now housed in the Royal Scottish Museum at Edinburgh.

During the late nineteen-fifties J. D. HUDSON, then a research student at Cambridge, was working on the stratigraphy of Eigg. Three reptile specimens he collected there stimulated fresh interest within the Department of Paleontology of the British Museum, (Natural History); B. H. NEWMAN of that department collected reptile and fish specimens in the island in 1961, and later re-examined the original Miller collection.

The reptile bed is part of the Great Estuarine Series and therefore of Bathonian (Middle Jurassic) age (HUDSON 1960, p. 313). The bed itself consists of from six to twelve inches of a hard, dark grey, shelly limestone which weathers to a pinkish red on the surface and is rich in bone fragments, fish scales and mollusces (HARKER and BARROW 1908, p. 22).

Many of the specimens collected in 1961 have been prepared with acetic acid. There is much plesiosaur material: an exoccipital, teeth, cervical, dorsal, and caudal vertebrae, a caudal rib, an immature left ischium, phalanges and a portion of the plastron. Other material includes the fragmentary remains of chelonians, crocodilians and ichthyosaurs, *Lepidotus* teeth, the dorsal fin spines of *Acrodus* or *Hybodus*, and coelacanth scales (HARKER and BARROW 1908, p. 22).

None of the specimens was found certainly associated although often close together; in many cases relative size approximation could be an indication of the bones being from the same individual. It would not seem wise to attempt at this stage to allocate the plesiosaur remains to any particular genus; further collecting may yield more diagnostic material. For the present it may be said that these remains represent a small plesiosaur similar in size to the small Liassic species *Plesiosaurus dolichodeirus* CONYBEARE 1824.”
4. Tabular Synopsis of the Distribution of the Plesiosaurians

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>➤</td>
<td>Complete or nearly complete skeleton</td>
</tr>
<tr>
<td>➡️</td>
<td>Skull or part of skull</td>
</tr>
<tr>
<td>❄️</td>
<td>Mandible or part of mandible</td>
</tr>
<tr>
<td>🗑️</td>
<td>Teeth</td>
</tr>
<tr>
<td>💼</td>
<td>Vertebrae or vertebral centra</td>
</tr>
<tr>
<td>💼️</td>
<td>Girdle bones</td>
</tr>
<tr>
<td>🦋️</td>
<td>Limb bones</td>
</tr>
</tbody>
</table>

The British Isles

U. Cretaceous

Elasmosauridae, gen. et sp. indet.

1. *Elasmosaurus constrictus* (Owen 1850)
 “Chalk”. Steyning (England)
 ➤

Plesiosauria, fam., gen. et sp. indet.

 ➤

 L. Cretaceous

Elasmosauridae

 ❄️ ➡️ ▶️

Cimoliosauridae

 ❄️

Plesiosauridae

5. “*Plesiosaurus* latispinus” Owen 1854

 L. Greensand (Aptian). Maidstone (England)
 ❄️ ➡️ ▶️

 ➤

 Polycotylidae

7. *Polyptchodon interruptus* Owen 1841
 ➤

 8. *Polyptchodon continuus* Owen 1841
 L. Greensand (Aptian). Maidstone (England)
 ❄️ ➡️ ▶️

 Rhomaleosauridae

 ➤

10. “*Plesiosaurus* bernardi” Owen 1840
 Neocomian. Reach etc. (England)
 ➤
1. *Leptocleidus superstes* Andrews 1922
Wealden. Berwick (England)

4. "*Plesiosaurus" phillipsi* Sauvage 1879
Portlandian. Quainton (England)

5. "*Cimoliasaurus" brevior* Lydekker 1889
Kimmeridge Clay. Weymouth (England)

Kimmeridge Clay. Kimmeridge Bay (England)

7. *Colymbosaurus manseli* Hulke 1870
Kimmeridge Clay. Kimmeridge Bay (England)

8. *Colymbosaurus megadeirus* Seeley 1869
Kimmeridge Clay. Ely (England)

9. *Colymbosaurus? trochanterius* (Owen 1840)
Kimmeridge Clay. Wiltshire (England)

11. *Plesiosaurus" ellipsospondylus* Phillips 1871
Kimmeridge Clay. Shotover (England)

12. *U. and M. Jurassic Plesiosauridae*

15. "*Plesiosaurus" phillipsi* Sauvage 1879
Portlandian. Quainton (England)

16. "*Colymbosaurus? brachistospondylus* Hulke 1870
Kimmeridge Clay. Kimmeridge Bay (England)

17. "*Plesiosaurus" phillipsi* Sauvage 1879
Portlandian. Quainton (England)

18. "*Cimoliasaurus" brevior* Lydekker 1889
Kimmeridge Clay. Weymouth (England)

19. "*Colymbosaurus? brachistospondylus* Hulke 1870
Kimmeridge Clay. Kimmeridge Bay (England)

20. "*Colymbosaurus manseli* Hulke 1870
Kimmeridge Clay. Kimmeridge Bay (England)

21. "*Colymbosaurus? trochanterius* (Owen 1840)
Kimmeridge Clay. Wiltshire (England)

22. *Apractocleidus teretipes* Smellie 1915
Oxford Clay. Peterborough (England)

23. *Cryptocleidus eurymerus* (Phillips 1871)
Oxford Clay. Bedford (England)

24. *Cryptocleidus oxoniensis* (Phillips 1871)

27. *Muraenosaurus plicatus* (Phillips 1871)
Oxford Clay. Summertown (England)

30. *Tremamesacleis platyclis* (Seeley 1892)
Oxford Clay. Peterborough (England)

Plesiosauridae, gen. et sp. indet.

32. Undescribed specimens collected by Mr. B. Newman (see above, p. 22) Bathonian. Isle of Eigg (Inner Hebrides)

Pliosauridae

33. *Pliosaurus brachydeirus* Owen 1841
Kimmeridge Clay. Market Rasen (England)
A revision of the classification of the Plesiosauria

41. "*Plesiosaurus* giganteus" Conybeare 1824 Kimmeridge Clay. Weymouth etc. (England)

42. "*Plesiosaurus* recentior" Parkinson 1822. See Tarlo (1960, p. 179)

43. "*Plesiosaurus* simplex" Phillips 1871 Kimmeridge Clay. Shotover (England)

Rhomaleosauridae

Plesiosauria, fam., gen. et sp. indet.

48. "*Plesiosaurus* affinis" Owen 1840 Kimmeridge Clay. Heddington etc. (England)

49. "*Plesiosaurus* ellipsospondylus" Phillips 1871 Kimmeridge Clay. Shotover (England)

L. Jurassic and Triassic Plesosauridae

50. *Microcleidus homaloospondylus* (Owen 1840) U. Lias, zone of *Hildoceras bifrons*. Whitby (England)

51. *Microcleidus macropterus* (Seeley 1865) U. Lias, zone of *Hildoceras bifrons* (? subzone of *Dactyloceras commune*). Lofthouse (England)

52. "*Plesiosaurus? conybeari" Sollas 1881 L. Lias, zone of *Asteroceras obtusum*. Charmouth (England)

54. *Plesiosaurus macromus* Owen 1840 L. Lias, "marl". Lyme Regis etc. (England)

55. *Plesiosaurus dolichodeirus* Conybeare 1824 L. Lias, zone of *Psiloceras planorbe*. Lyme Regis etc. (England)

? O ?

Plesiosauridae, gen. et sp. indet.

Rhomaleosauridae

59. *Rhomaleosaurus cramptoni* (Carte and Baily 1863) U. Lias, u. part of the zone of *Hildoceras bifrons*. Kettleness (England)

61. *Eretmosaurus dubius* Blake 1876 U. Lias, zone of *Hildoceras bifrons* (?subzone of *Dactyloceras commune*). Whitby (England)

63. *Sthenarosaurus dawkinsi* Watson 1911 U. Lias, zone of *Hildoceras bifrons* (?subzone of *Dactyloceras commune*). Saltwick (England)

64. *Macroplata longirostris* (Blake 1876) U. Lias, zone of *Harpoceras falciifer*. Whitby (England)

66. *Eretmosaurus rugosus* (Owen 1840) L. Lias, zone of *Asteroceras obtusum* (?subzone of *Asteroceras stellare*). Granby (England)

67. "*Plesiosaurus* macrocephalus* Conybeare 1824* L. Lias, zone of *Arietites bucklandi*. Bitton (England)

68. "*Plesiosaurus* rostratus* Owen 1865* L. Lias, zone of *Arietites bucklandi*. Charmouth (England)

69. *Euryycleidus megacephalus* (Stutchbury 1846) L. Lias, ?zone of *Schlotheimia angulata*. Street (England)

70. *Macroplata tenuiceps* Swinton 1930 L. Lias, zone of *Schlotheimia angulata*. Harbury (England)

71. *Euryycleidus arcuatus* (Owen 1840) L. Lias, ?zone of *Psiloceras planorbe*. Bitton etc. (England)

72. "*Plesiosaurus* macrocephalus* Conybeare 1824* L. Lias, zone of *Psiloceras planorbe*. Lyme Regis (England)

73. "*Plesiosaurus* hawkinsi* Owen 1840* L. Lias, "Ostrea-beds". Street etc. (England)

75. "*Plesiosaurus* costatus* Owen 1840* Rhaetic. Aust Cliff (England)

76. "*Plesiosaurus* hawkinsi* Owen 1840* Rhaetic. Aust Cliff (England)

A revision of the classification of the Plesiosauria

Plesiosauria, fam., gen. et sp. indet.
78. *Plesiosaurus? coelospondylus* Owen 1865
 U. Lias. Whitby (England)

North-western continental Europe

U. Cretaceous
Elasmosauridae, gen. et sp. indet.
79. *Plesiosaurus? erraticus* Phillips 1871
 L. Oolite. Stonesfield (England)

Polycotylidae, gen. et sp. indet.
80. “*Plesiosaurus*? houzeaui” Dollo 1909
 U. Senonian. Hainault (Belgium)

L. Cretaceous
Elasmosauridae, gen. et sp. indet.
81. Undescribed specimen in the Royal
 Institute of Natural Science, Brussels
 Senonian, “Craie phosphatique”. Cuesnes
 (Belgium)

Polycotylidae, gen. et sp. indet.
82. Undescribed specimen in the Royal
 Institute of Natural Science, Brussels
 L. Senonian. Lonzée (Belgium)

Plesiosauridae
83. Undescribed specimen in the National
 Museum of Natural History, Paris
 Albian. Grandpré (N. France)

U. and M. Jurassic
Plesiosauridae
84. *Cimoliasaurus planus* (Owen 1864)
 Albian. Louppy (N. France)

Cimoliasauridae
85. *Brancasaurus brancai* Wegner 1914
 Wealden. Gronau (N. W. Germany)

86. “*Plesiosaurus*? degenhardti” Koken 1887
 Wealden. Bückeburg (N. W. Germany)

87. “*Plesiosaurus*? limnophilus” Koken 1887
 Wealden. Ummeln (N. W. Germany)

88. “*Plesiosaurus*? valdensis” Lydekker
 1889 Wealden. Gronau (N. W. Germany)

Plesiosauridae, gen. et sp. indet.
89. “*Plesiosaurus*? kanzeri” Koken 1905
 Wealden. Gronau (N. W. Germany)

Polycotylidae
90. *Polyptychodon interruptus* Owen 1840
 Albian. Louppy (N. France)

Plesiosauria, fam., gen., et sp. indet.
91. “*Plesiosaurus*? latispinus” Owen 1854
 Albian. Grandpré (N. France)

92. “*Plesiosaurus*? pachyomus” Owen 1840
 Albian. Grandpré (N. France)

93. A specimen mentioned by Lydekker
 (1889, p. 220, no. 33180) Albian. Port-
 du-Rhône (France)

U. and M. Jurassic
Plesiosauridae
94. *Colymbosaurus? portlandicus* (Owen
 1869) U. Portlandian. Auvrignhe
 (N. W. France)

95. “*Plesiosaurus*? phillipsi” Sauvage 1879
 U. Portlandian. Boulogne-sur-mer
 (N. W. France)

96. *Colymbosaurus? cf. trochanterius* (Owen
 1840) M. Portlandian. Tour Croy, near
 Wiméreux (N. W. France)

97. *Cryptocleidus? beaugrandi* Sauvage
 1912 U. and M. Kimmeridgian, Bou-
 logne-sur-mer (N. W. France)

100. Muraenosaurus plicatus (Phillips 1871) M. Callovian, zone of Erymnoceras coronatum. Montaubert etc. (N. W. France)

Plesiosauridae, gen. et sp. indet.

103. "Plesiosaurus" ellipsospondylus Phillips 1871 U. Kimmeridgian. Auvringhen etc. (N. W. France)

104. Colymbosaurus dutertrei Sauvage 1879 Kimmeridgian. Boulogne-sur-mer (N. W. France)

Plesiosauridae

105. Pliosaurus brachydeirus Owen 1841. See Tarlo (1960, pp. 152 and 179) U. Portlandian. La Poterie, Boulogne-sur-mer (N. W. France)

107. Liopleurodon ferox Sauvage 1873 Oxfordian. Wast, near Boulogne-sur-mer (N. W. France)

Plesiosauridae

108. Liopleurodon cf. ferox Sauvage 1873. Specimens described by Bigot (1938, pp. 634—636); see Tarlo (1960, pp. 165—166) Callovian. Argences (N. W. France)

109. Liopleurodon grossouvrei Sauvage 1873 Callovian. Charly in Cher (centr. France)

110. Liopleurodon pachydeirus (Seeley 1869). A specimen described by Follet (1949); see Tarlo (1960, p. 167) Bathonian. Ecouché (N. W. France)

Plesiosauridae, gen. et sp. indet.

Rhomaleosauridae

112. Rhomaleosaurus? carinatus Cuvier 1829 Portlandien — M. Kimmeridgian. Boulogne-sur-mer etc. (N. W. France)

Plesiosauria, fam., gen. et sp. indet.

114. Haematosaurus lanceolatus Sauvage 1874 (non-Plesiosaurian) M. Kimmeridgian, zone of Aulacostephanus pseudomutabilis. Châtillon (N. W. France)

L. Jurassic and Triassic

Plesiosauridae

116. *Microcleidus*? cf. *homalospondylus* (Owen 1840). This specimen was described by v. Beneden (1882, pp. 1—34) as *Plesiosaurus latispinus* M. Lias. Dampicourt (Luxembourg)

120. *Plesiosaurus*? *trigonus* Cuvier 1824 ?L. Lias. Calvados (N. W. France)

121. *Plesiosaurus*? *bitractensis* Sauvage 1883 Rhaetic. Autun (centr. France)

South-western Europe

U. Cretaceous

Rhomaleosauridae, gen. et sp. indet.

126. "*Cimoliasaurus*" sp. Sauvage 1897—1898 Cenomanian. Alcántara (Portugal)

L. Jurassic and Triassic

Plesiosauridae

Central Europe

U. Cretaceous

Polycostyliidae

Plesiosauria, fam., gen. et sp. indet.

130. "*Cimoliasaurus*" *lissaensis* Frisch 1905 Turonian. Lysa, near Labem (Bohemia)

131. "*Cimoliasaurus*" *teplicensis* Frisch 1905 Turonian. Crast (Bohemia)

132. "*Cimoliasaurus*" *vinämus* Frisch 1905 Turonian. Hundorf, near Teplitz (Bohemia)

133. *Hunosaurus jasseli* Frisch 1905 Turonian. Hundorf, near Teplitz (Bohemia)

134. *Iserosaurus litoralis* Frisch 1905 (?non-Plesiosaurian) Turonian. Milovice (Bohemia)
135. Specimens described by Augusta and Soukup (1940, pp. 25--26) Turonian. Trebovice (Bohemia)

L. Cretaceous
Elasmosauridae, gen. et sp. indet.

136. Specimen described by Koken (1883, pp. 786--788) as Plesiosaurus sp. III. Neocomian, "Hilston". Kirchwehren (N. centr. Germany)

Plesiosauridae, gen. et sp. indet.

137. "Plesiosaurus" gurgitis Picter and Renever 1858 Neocomian (?Aptian). St. Croix (Switzerland)

Polycotylidae

139. Polyptychodon cf. interruptus Owen 1841 Neocomian, "Hilston". Langelsheim etc. (N. centr. Germany)

Plesiosauria, fam., gen. et sp. indet.

140. Specimens described by Koken (1883, pp. 780--786) as Plesiosaurus I and II Neocomian, "Hilston". Steinlach, near Sargitter (N. centr. Germany)

U. and M. Jurassic
Plesiosauridae, gen. et sp. indet.

141. Cryptoleidus kimmeridgianus Hirzberg 1924 Kimmeridgian. Pieklo (S. Poland)

Pliosauridae

142. Liopleurodon cf. jerox Sauvage 1873. A specimen described by H. v. Huene (1893, pp. 31--46); see Tarlo (1960, pp. 165 and 166) U. Callovian, "Ornamenton". Near Lauffen (S. Germany)

Rhomaleosauridae, gen. et sp. indet.

143. Liopleurodon jerox Sauvage 1873. A specimen described by v. Huene (1934, pp. 31--46); see Tarlo (1960, pp. 165 and 166) U. Callovian, "Ornamenton". Near Lauffen (S. Germany)

Plesiosauridae

Plesiosauria, fam., gen. et sp. indet.

145. "Cimoliasaurus" hirzbergii Kuhn 1934. Hirzberg (1924, pp. 221--222) described the specimen and named it Cimoliasaurus portlandicus n. sp., but the specific name was preoccupied by Owen (1869). Portlandian. Brzostowka (S. Poland)

L. Jurassic and Triassic
Plesiosauridae

146. Plesiosaurus brachypterygius v. Huene 1923 U. Lias (?), "Posidonienschiefer". Holzmaden (S. Germany)

Plesiosaurus? nothosauroides Dames 1895 U. Lias (?), zone of Arnioceras semicostatum. Strafsburg bei Gmünd (S. Germany)

147. Plesiosaurus guilelmi imperatoris Dames 1895 U. Lias (?), "Posidonienschiefer". Holzmaden (S. Germany)

148. Plesiosaurus dolichodeirus Conybeare 1824 L. Lias (?), zone of Arietites bucklandi. Langenbrückener Senke (S. Germany)

149. Plesiosaurus dolichodeirus Conybeare 1824 L. Lias (?), zone of Arietites bucklandi. Vaihingen (S. Germany)
151. *Plesiosaurus? robustus* DAMES 1895 L. Lias (z), zone of *Arietites bucklandi*. Schaichof (S. Germany)

154. *Rhomaleosaurus aureus* TH. PLEININGER 1844 Rhaetic. Württemberg (S. Germany)

155. *Eurycleidus cf. megacephalus* (STUTCHBURY 1846) L. Lias (z), zone of *Psiloceras planorbe*. Kanonenberg, near Halberstadt (N. centr. Germany)

156. *Termatosaurus alberti* TH. PLEININGER 1844 Rhaetic. Württemberg (S. Germany)

157. "*Plesiosaurus* (Eretmosaurus?) bavaricus* DAMES 1895 U. Lias. Görtz (S. Germany)

162. *Plesiosaurus? sp.* Specimen described by DAMES (1895, pp. 11—12) L. Lias (z), zone of *Arietites bucklandi*. Hüttlingen (S. Germany)

The Baltic Region

U. Cretaceous

Elasmosauridae

164. *Elasmosaurus? cf. gigas* (Schröder 1885) L. Campanian. Ignaberga (Scania)

166. "*Elasmosaurus*" cf. helmerseni (KIPRIJANOFF 1882) L. Campanian. Ignaberga (Scania)

Elasmosauridae, gen. et sp. indet.

167. Specimens described by PERSSON (1959, pp. 459—460) ?L. Maestrichtian, Balsvik; L. Campanian, Axeltoftp, Ignaberga, Ivö (Scania)

Cimolasauridae

168. *Scanisaurus cf. nazarowi* (BOGOLUBOV 1911) L. Campanian. Ignaberga, Ivö etc. (Scania)

Polycotylidae, gen. et sp. indet.

169. Specimens described by PERSSON (1959, pp. 441—443) L. Campanian. Ignaberga; Ivö (Scania)
Rhomaleosauridae

170. "Plesiosaurus" cf. bernardi Owen 1850
?U. Senonian. Rosenberg etc. (Prussia)

171. "Plesiosaurus" balticus Schröder 1885
?L. Senonian. Marienburg (Prussia)

Plesiosauria, fam., gen. et sp. indet.

172. Specimens described by Persson (1959, pp. 460–461) ?L. Maestrichtian, Bjärnum; L. Campanian, Ignaberga, Ivö etc. (Scania)

U. and M. Jurassic

Pliosauridae, gen. et sp. indet.

European Russia

U. Cretaceous

Elasmosauridae

174. "Elasmosaurus" helmerseni (Kiprianoff 1882) Senonian. Maloje Serdoba (the oblast of Saratov)

175. Elasmosaurus orskensis Bogolubov 1911 Senonian. Konopljanka (the oblast of Chkalov)

176. Elasmosaurus? serdobensis Bogolubov 1911 Senonian. Maloje Serdoba (the oblast of Saratov)

177. Elasmosaurus? kurskensis Bogolubov 1911 ?Cenomanian. Possoskovo (the oblast of Saratov)

Cimoliasauridae

178. Scaniasaurus nazarovi (Bogolubov 1911) Senonian. (The oblast of Chkalov)

Polycotylidae

179. Polycotylus cf. latipinnis Cope 1869 Senonian. Maloje Serdoba (the oblast of Saratov)

180. Polycotylus orientalis Bogolubov 1911 Senonian. Konopljanka (the oblast of Chkalov)

181. Polycotylus ultimus Bogolubov 1911 Senonian. Maloje Serdoba (the oblast of Saratov)

182. Polycotylus brevispondylus Bogolubov 1911 ?Cenomanian. Locality unknown

183. Polycotylus epigurgitis Bogolubov 1911 Cenomanian. Devitjy (the oblast of Voronesj)

184. Polycotylus ichthyospondylus var. tanais Bogolubov 1911 Cenomanian. Devitjy (the oblast of Voronesj)

185. Polypoichodon interruptus Owen 1841 Cenomanian. (The oblast of Kursk)

Rhomaleosauridae

186. "Plesiosaurus" cf. balticus Schröder 1885 Senonian. Konopljanka (the oblast of Chkalov)

Plesiosauria, fam., gen. et sp. indet.

188. "Cimoliasaurus" sp. Bogolubov 1911, pp. 382–386 Senonian. Guberli (the oblast of Chkalov)

A revision of the classification of the Plesiosauria

L. Cretaceous

Plesiosauria, fam., gen. et sp. indet.

190. “Plesiosaurus neocomiensis” Campiche 1860 ?Senonian. (The oblast of Saratov)

U. and M. Jurassic

Plesiosauridae

193. Colymbosaurus? cf. brachistospondylus Hulke 1870 Portlandian. Pljos (the oblast of Kostroma)

194. Colymbosaurus sclerodirus Bogolubov 1911 Portlandian. Vorobjovy Gory (the Moscow basin)

195. Colymbosaurus sp. Bogolubov 1911 Portlandian. Mnjovniki (the Moscow basin)

196. Colymbosaurus? cf. trochanterius (Owen 1840) Portlandian. Chukino (the Moscow basin)

197. Muraenosaurus elasmosauroides Bogolubov 1911 Portlandian. (The Moscow basin)

198. Muraenosaurus fahrenkohli (Waldheim 1846) Portlandian. Chukino (the Moscow basin)

199. Muraenosaurus purbecki Bogolubov 1911 Portlandian. Tartarovo (the Moscow basin)

201. Muraenosaurus sp. Bogolubov 1911, pp. 262—264 Oxfordian or Callovian. (The oblast of Jaroslavl)

202. Muraenosaurus leedsi Seeley 1874 Callovian. (The oblast of Riasan)

203. Cryptocleidus simbirskensis Bogolubov 1909 Callovian. Goroditje (the oblast of Uljanovsk)

204. Cryptocleidus? sp. Bogolubov 1911 Callovian? (The oblast of Vologda)

Plesiosauridae

205. Stretosaurus cf. macromerus (Phillips 1871) Portlandian? Mnjovniki (the Moscow basin)

206. Pliosaurus brachyspondylus (Owen 1839) Kimmeridgian. Zhukino (the Moscow basin)

207. Pliosaurus irgisensis (Novozhilov 1948) Kimmeridgian. Saveljevsk (the oblast of Saratov)

208. Pliosaurus rossicus Novozhilov 1948 Kimmeridgian. Boinsk (the Republic of Chuvaš)

209. Peloneustes philarchus Seeley 1869 Oxfordian. Near the river Unza (The oblast of Kostroma)

210. Liopleurodon ferox Sauvage 1873 Callovian. Rezhika etc. (The Moscow basin)

3 — L U Å : : P. O. Persson
Rhomaleosauridae

211. *Simolestes vorax* **Andrews** 1909 Callovian. Rezhika (the Moscow basin)

Northern Asia

L. Jurassic and Triassic

Plesiosauridae

Eastern Asia

U. Cretaceous

Elasmosauridae, gen. et sp. indet.

Pliosauridae

See Tarlo (1960, pp. 163 and 180) Oxfordian. Weiyuan (S. China)

U. and M. Jurassic

Pliosauridae

Southern Asia

U. and M. Jurassic

Rhomaleosauridae

216. *Simolestes? indicus* **Lydekker** 1877 Umia Stage (Portlandian) Kach (India)

South-western Asia

U. Cretaceous

Plesiosauria, fam., gen. et sp. indet.

217. Material described by **Haas** 1958 Cenomanian. Ma’ayan, near Elath (Israel)

North-eastern Africa

U. Cretaceous

Polycotylidae, gen. et sp. indet.

218. "Plesiosaurier A." **Stromer** 1935 Cenomanian. Baharije (Egypt)

Plesiosauria, fam., gen. et sp. indet.

219. "Plesiosaurier D". **Stromer** 1935 Cenomanian. Baharije (Egypt)

Eastern Africa

U. and M. Jurassic

Rhomaleosauridae

221. *Simolestes nowackianus* v. **Huene** 1938 Oxfordian. Harrar (Ethiopia)

Southern Africa

L. Cretaceous

Rhomaleosauridae

222. *Leptopleidus capensis* **Andrews** 1911 Neocomian, Uitenhage Beds. Picnic Bush (Cape of Good Hope)

South-western Africa

U. Cretaceous

Cimoliasauridae, gen. et sp. indet.

223. Specimen under investigation by Dr. **M. T. Antunes**, of Lisbon Maestrichtian. The enclave of Cabinda, N. of the Congo River estuary

North Western Africa

U. Cretaceous

Elasmosauridae, gen. et sp. indet.

224. "*Plesiosaurus* mauretanicus* Arambourg** 1952 Maestrichtian. Djebel Tilda etc. (Morocco)
A revision of the classification of the Plesiosauria

225. Undescribed specimens collected by Dr. L. Gentil; in the National Museum of Natural History, Paris. ?Turonian. Chichaona (Morocco)

The Arctic Region

L. Cretaceous

Plesiosauridae

226. "Plesiosaurus" latispinus Owen 1854 Aptian. Lonely Island (in the Kara Sea)

U. and M. Jurassic

Plesiosauridae

227. Cryptocleidus (Apractocleidus?) aldingeri v. Huene 1935 L. Kimmeridgian. Milne Island (Greenland)

Plesiosauridae, gen. et sp. indet.

229. Specimen described by Wiman (1914, pp. 201—204) ?U. Jurassic. Mt. Janus (W. Spitzbergen)

Pliosauridae

231. Peloneustes cf. philarchus Seeley 1869 Oxfordian. Hooker Island (Franz Joseph Land)

L. Jurassic and Triassic

Plesiosauria, fam., gen. et sp. indet.

Central North America

U. Cretaceous

Elasmosauridae

233. Leirospondylus ultimus Brown 1913 Edmonton Formation (Maestrichtian). Red Deer River, Alberta (Canada)

234. Alzadasaurus pembertoni Welles and Bump 1949 Sharon Springs member of the Pierre Shale (M. Campanian), near Iona (S. Dakota)

236. Hydralmosaurus serpentinus (Cope 1877) Cretaceous no. 3 (?Niobrara Formation or Pierre Shale; see Welles 1952, p. 61. Coniacian, Santonian or Campanian). "... in a bluff in Nebraska, on the southwest side of the Missouri, between Sioux City, Iowa, and Yanktown, Dakota".

237. Alzadasaurus kansasensis Welles 1952 Niobrara Formation (Coniacian — Santonian). Wallace County (Kansas)

238. Styxosaurus browni Welles 1952 Niobrara Formation (Coniacian — Santonian). Mule Creek, Edgemont (S. Dakota)

239. Styxosaurus snowi (Williston 1890) Niobrara Formation (Coniacian — Santonian). Hell Creek, Logan County (Kansas)

240. Thalassiosaurus ischiadicus (Williston 1903) Niobrara Formation (Coniacian — Santonian). Logan County (Kansas)
241. *Thalassonomosaurus marshi* (WILLISTON 1906) Niobrara Formation (Coniacian — Santonian). Logan County (Kansas)

242. *Ogmodirus martini* WILLISTON and MOODIE 1913 Fort Hays Limestone (basal Niobrara Formation; Coniacian) or possibly uppermost Benton Shale (Turonian). Cloud County (Kansas)

243. *Elasmosaurus morgani* WELLES 1949 U. Eagle Ford Shale (Turonian). Andy Anderson farm, near Cedar Hill, Dallas County (Texas)

244. *Thalassomedon haningtonti* WELLES 1943 Graneros Shale (U. Cenomanian — L. Turonian). Near Pritchett (Colorado)

245. *Alzadasaurus riggsi* WELLES 1943 Benton Shale (Cenomanian — Turonian). Near Alzada (Montana)

Elasmosauridae, gen. et sp. indet.

?Cimoliasauridae, gen. et sp. indet.

Polycotyliidae

248. *Polycotylus latipinnis* COPE 1869 U. Niobrara Formation (Santonian). Smoky River etc. (Kansas)

249. *Dolichorhynchops osborni* WILLISTON 1902 Niobrara Formation (Coniacian—Santonian). Logan County (Kansas)

Polycotyliidae

250. *Polycotylus dolichopus* WILLISTON 1906 Niobrara Formation (Coniacian—Santonian). (Kansas)

251. *Trinacromerum anonyum* WILLISTON 1903 U. Benton Shale (Turonian). Near Solomon (Kansas)

252. *Trinacromerum willisti* RIGGS 1944 Greenhorn Limestone (U. Cenomanian — L. Turonian). Near Concordia (Kansas)

253. *Brachasichonius lucasi* WILLISTON 1903 Benton Shale (Cenomanian—Turonian). Delphos, Ottawa County (Kansas)

255. *Trinacromerum kirki* RUSSEL 1935 Benton Shale (Cenomanian—Turonian). Assiniboine River, Manitoba (Canada)

Polycotyliidae, gen. et sp. indet.

256. *Piptomerus hexagonus* COPE 1887 Fox Hills Formation, *fide* COPE (Maestrichtian). (New Mexico)

257. *Piptomerus megaloporus* COPE 1887 Fox Hills Formation, *fide* COPE (Maestrichtian). (New Mexico)

258. *Piptomerus microporus* COPE 1887 Fox Hills Formation, *fide* COPE (Maestrichtian). (New Mexico)

259. *Embaphias circulosus* COPE 1894 Pierre Shale (Campanian). Big Bend of Missouri (South Dakota)

260. "*Elasmosaurus*" *intermedius* COPE 1894 Pierre Shale (Campanian). Big Bend of Missouri (South Dakota)
A revision of the classification of the Plesiosauria

261. "Plesiosaurus" gulo Cope 1872 Niobrara Formation (Coniacian—Santonian) or Pierre Shale (Campanian). (Kansas)

262. "Elasmosaurus" sternbergi Williston 1906 M. Niobrara Formation (Coniacian). Gove County (Kansas)

263. Trinacromerum latimanus Williston 1908 Haily Shale (Turonian). (Wyoming)

264. Piratosaurus plicatus Leidy 1865 U. Cretaceous. Red River, Selkirk Settlement, Manitoba (Canada)

265. Orophosaurus pauciporus Cope 1887 Fox Hills Formation, fide Cope (Maestrichtian). (New Mexico)

266. Uronautes cetiformis Cope 1876 Fox Hills Formation, fide Cope (Maestrichtian). Amell’s Creek (Montana)

L. Cretaceous

Elasmosauridae, gen. et sp. indet.

269. "Plesiosaurus" mudgei Cragin 1894 Fredericksburg Shale (Albian). Blue Cut Hill, Kiowa County (Kansas)

270. "Plesiosaurus" Gouldi Williston 1897 (partim; see Welles 1952, p. 106) Comanche Series (U. Aptian—L. Albian). Upper Bluff and Sand Creek, near Ashland, Clark County (Kansas)

Polycotylidae, gen. et sp. indet.

U. and M. Jurassic

273. "Plesiosaurus" shirleyensis Knight 1900 "Shirley Stage"= U. Sundance Formation (Oxfordian). Albany County (Wyoming)

274. Tricleidus? laramiensis (Knight 1900) "Shirley Stage"= U. Sundance Formation (Oxfordian). Freezout Hills (Wyoming)

Pliosauridae

275. Megalneusaurus rex Knight 1898 "Como Stage"=Morrison Formation (Kimmeridgian—L. Portlandian). Natrona County (Wyoming)

Plesiosauria, fam., gen. et sp. indet.

276. Pantosaurus striatus Marsh 1891 “Baptanodon Beds”= U. Sundance Formation (Oxfordian). (Wyoming)

Eastern North America

U. Cretaceous

Elasmosauridae, gen. et sp. indet.

277. "Elasmosaurus" orientalis Cope 1868 Navesink Marl (Maestrichtian). Swedesboro (New Jersey)

278. "Plesiosaurus" brevifemur Cope 1875 "Green Sand no. 5". (New Jersey)
279. "Plesiosaurus" De Kay 1833 “U. Cretaceous”. Navesink Hills (New Jersey)

Cimoliasauridae
280. Cimoliasaurus magnus LEIDY 1851 “Green Sand”. Burlington County (New Jersey)

Polycotylidae, gen. et sp. indet.
281. Taphrosaurus lockwoodi (COPE 1870) “Clay no. 1”. Near Matteawan. Monmouth County (New Jersey)

South-eastern North America
Cretaceous
Plesiosauria, fam., gen. et sp. indet.
282. Discosaurus planior LEIDY 1870 “Cretaceous”. (Mississippi)

283. Discosaurus vetustus LEIDY 1851 “Cretaceous”. (Alabama)

Southern North America
L. Cretaceous
Elasmosauridae, gen. et sp. indet.

Western North America
U. Cretaceous
Elasmosauridae

U. and M. Jurassic
Plesiosaurs, fam., gen. et sp. indet.
289. "Plesiosaurus" hesternus WELLES 1943 Portlandian. San Luis, Obispo County (California)

Northern South America
U. Cretaceous
Elasmosauridae
290. Alzadasaurus tropicus COLBERT 1949 Cenomanian or Turonian. Altagrazia de Orituco, in the district of Monagas (Venezuela)

Eastern South America
Cretaceous
Plesiosauria, fam., gen. et sp. indet.
291. Specimens described by WOODWARD (1891, pp. 314—317) “Cretaceous”. Bahia (Brazil)

Southern South America
U. Cretaceous
Elasmosauridae, gen. et sp. indet.
292. The major part of the material which DEECKE (1895, pp. 32—50) referred
A revision of the classification of the Plesiosauria

39

to *Pliosaurus chilensis* Gervais in Gay 1848. See Colbert (1949, pp. 17—19)
Senonian. Quiriquina (Chile)

Cimoliasauridae

293. *Aristoneutes parvidens* Cabrera 1941
Maestrichtian. Cañadón del Loro, Chubut (Argentina)

Cimoliasauridae, gen. et sp. indet.

294. *Cimoliasaurus* sp. Deecke 1895
Senonian. Quiriquina (Chile)

Polyptosauridae, gen. et sp. indet.

295. "*Pliosaurus*" chilensis Gervais in Gay 1848. See Colbert (1949, pp. 17—19)
Senonian. San Vincente, near Concepcion (Chile)

Polycotylidae, gen. et sp. indet.

296. *Cimoliasaurus* andium Deecke 1895
Senonian. Quiriquina (Chile)

Cimoliasauridae

299. *Cimoliasaurus neogaeus* Burmeister 1861
U. Lias. Juntas (Argentina)

L. Jurassic and Triassic

Plesiosauria, fam., gen. et sp. indet.

297. *Pliosaurus* neogaeus Burmeister 1861
U. Lias. Juntas (Argentina)

Eastern and Southern Australia

L. Cretaceous

Elasmosauridae

298. *Woolungasaurus* sp. Persson 1960
Albian. Neales River (S. Australia)

Polyptosauridae

299. *Woolungasaurus* sp. Persson 1960
Albian. Richmond (Queensland)

Polycotylidae

300. *Woolungasaurus glendowerensis* Persson 1960
Aptian. Glenbower Station, near Prairie (Queensland)

Elasmosauridae, gen. et sp. indet.

301. Specimen I. Persson 1960 (p. 18)
Albian. Near the Upper Flinders River (Queensland)

302. Specimen II. Persson 1960 (pp. 18—19)
Albian. Richmond (Queensland)

303. Specimen IV. Persson 1960 (p. 20)
Albian. Dunluce Station, Hughenden (Queensland)

304. Specimen III. Persson 1960 (pp. 19—20)
Aptian. Amby, near Roma (Queensland)

Cimoliasauridae

305. *Cimoliasaurus maccoyi* Etheridge 1904
Aptian, Roma Series. White Cliffs (New South Wales)

Polycotylidae

308. *Dolichorhynchops*? sp. Persson 1960
Aptian, Roma Series. White Cliffs (New South Wales)

Polycotylidae, gen. et sp. indet.

309. Specimen I. Persson 1960 (pp. 5—6)
Aptian. Wetherby, near Richmond (Queensland)

310. Specimen II. Persson 1960 (p. 6)
Aptian, Roma Series. White Cliffs (New South Wales)
Pliosauridae

311. *Kronosaurus queenslandicus* Longman 1924 Albian. The Hughenden district (Queensland)

Western Australia

U. Cretaceous

Plesiosauria, fam., gen. et sp. indet.

312. Specimens described by Teichert and Matheson (1944, pp. 167—170) Lower Senonian. Dandaragan (W. Australia)

New Zealand

U. Cretaceous

Elasmosauridae

313. *Mausaurus haasti* Hector 1874 U. Cretaceous, Waipara and Amuri Beds. Waipara; Amuri Bluff (South Island)

Elasmosauridae, gen. et sp. indet.

314. “*Plesiosaurus* ” holmesi Hector 1874 U. Cretaceous, Waipara and Amuri Beds. Waipara; Amuri Bluff (South Island)

Cimoliasauridae

315. “*Plesiosaurus* ” hoodi Owen 1870 U. Cretaceous, Waipara and Amuri Beds. Waipara; Amuri Bluff (South Island)

Polycotylidae, gen. et sp. indet.

316. *Cimoliasaurus australis* Owen 1862 U. Cretaceous, Waipara and Amuri Beds. Waipara; Amuri Bluff (South Island)

Plesiosauria, fam., gen. et sp. indet.

318. *Mausaurus latibrachialis* Hector 1874 U. Cretaceous, Amuri Beds. Amuri Bluff (South Island)

319. “*Plesiosaurus* ” mackayi Hector 1874 U. Cretaceous, Amuri Beds. Amuri Bluff (South Island)

320. “*Plesiosaurus* ” traversi Hector 1874 U. Cretaceous, Amuri Beds. Amuri Bluff (South Island)
5. Selective synonym list

Only specific synonyms are concerned. Valid names in spaced italics. The numerals in brackets refer to the tabular synopsis.

Cimoliasaurus australis Owen 1862 [316] — *Cimoliasaurus crassicostatus* Owen 1870, p. 53.

“*Cimoliasaurus*” hirzbergi Kuhn 1934 [145] — *Cimoliasaurus portlandicus* Hirzberg 1924, p. 221 (non Owen 1869, p. 8).

Cimoliasaurus planus (Owen 1864) [4, 84] — *Plesiosaurus pachyomus* Owen 1840, p. 74 (partim).

Plesiosaurus guilemi imperatoris Dames 1895 [147] — Seeleyosaurus holzmadenensis White 1940, p. 461.

"Plesiosaurus" hawkinsi Owen 1840 [73, 76] — Plesiosaurus hexatarsostinus Hawkins 1834, p. 40; ?Plesiosaurus pentatarsostinus Hawkins 1834, p. 40; Plesiosaurus etheridi Huxley 1858, p. 158.

6. List of rejected species

The numerals in brackets refer to the numbers in the tabular synopsis.

Brimosaurus grandis Leidy 1854 [247]
Cimoliasaurus leucoscelopus Etheridge 1897
(see above, p. 41)
"Cimoliasaurus" hirzbergi Kuhn 1934 [145]
— lissaensis Frutsch 1905 [130]
— teplicensis Frutsch 1905 [131]
— vicinus Frutsch 1905 [132]
Colymbosaurus duxterrei Sauvage 1879
[104]
Cryptoleidus kimmeridgensis Hirzberg 1924
[141]
Discosaurus planior Leidy 1870 [282]
— vetustus Leidy 1851 [283]
Elasmosaurus constrictus (Owen 1850) [1]
— ? sachalinensis Riabinin 1915 [213]
"Elasmosaurus" intermedius Cope 1894 [260]
— orientalis Cope 1868 [277]
— sternbergi Williston 1906 [262]
Embaphias circulosus Cope 1894 [259]
Haematosaurus lanceolatus Sauvage 1874
[114]
Hunosaurus jasseli Frutsch 1905 [133]
A revision of the classification of the Plesiosauria

43

Iserosaurus litoralis FRITSCH 1905 [134]
Mauisaurus latibrachialis HECTOR 1874 [318]
Oligopsis grandaevis Leidy 1872 [268]
Orophosaurus panciporus COPE 1887 [265]
Pantosaurus striatus Marsh 1891 [276]
Piptomerus hexagonus COPE 1887 [256]
Piptomerus megaloporus COPE 1887 [257]
— microporus COPE 1887 [258]
Piratosaurus plicatus LEIDY 1865 [264]
Plesiosaurus ? coelospondylus OWEN 1865 [78]
— ? erraticus PHILLIPS 1871 [79]
— macrospondylus Mac Coy 1867 (see above, p. 41)
— neogaerus Burmeister 1861 [297]
— ? platydeirus OWEN 1854 (non SEELEY 1869) [58]
— ? posidoniae QUENSTEDT 1848 [160]
— ? suevicus QUENSTEDT 1858 [161]
— sutherlandi Mac Coy 1867 (see above, p. 41)
— “Plesiosaurus” affinis OWEN 1840 [48]
— (Eretmosaurus?) bavaricus Dames 1895 [157]
— brevijenur COPE 1875 [278]
— ellipsospondylus PHILLIPS 1871 [21, 49, 103]
— giganteus CONYBEARE 1824 [41]
— gouldi WILLISTON 1897 [270, 271]
— gulo COPE 1872 [261]
— gurgitis PIETT & RENEVIER 1858 [137]
— hesternus WELLES 1943 [289]
— holmesi HECTOR 1874 [314]
— hoodi OWEN 1870 [315]
— howzeai DOLLO 1909 [80]
— kanzleri KOKEN 1905 [89]
— latispinus OWEN 1854 [91]
— mackayi HECTOR 1874 [319]
— mauretanicus ARAMBourg 1952 [224]
— mexicanus WIELAND 1910 [284]
— mudgei CRAGIN 1894 [269]
— neocomiensis CAMPICHE 1860 [138, 190]
— nordmanni EICHWALD 1859 [192]
— pachyomus OWEN 1840 [92]
— recentior PARKINSON 1822 [42]
— simplex PHILLIPS 1871 [43]
— smithi OWEN 1882 [2]
— traversi HECTOR 1874 [320]
— vaccinulensis HAY 1930 [267]
Pliosaurus aequalis PHILLIPS 1871 [44]
— planus HULKE 1883 [45]
“Pliosaurus” chilensis GERVAIS in GAY 1848 [295]
Polyctylus tenuis HECTOR 1874 [317]
— suprajurensis SAUVAGE 1876 [111]
Sinopliosaurus weiyuanensis YOUNG 1942 [215]
Taphrosaurus lockwoodi (COPE 1870) [281]
Thaumatosaurus oolithicus H. v. MEYER 1841 [144]
Trinacromerum latimanus WILLISTON 1908 [263]
Uronautes cetiformis COPE 1876 [266]

7. “Non-Plesiosaursans”

F. 2448; in the Queensland Museum, Brisbane (LONGMAN 1935, p. 239). — This is an Ichthyosaurian bone fragment (see PERSON 1960, p. 21).

Ischyrotherium antiquum LEIDY 1856. — See WELLES 1952, p. 119.
Nothosaurops occiduus LEIDY 1870. — See WELLES 1952, p. 120.
Plesiosaurus doedicomus OWEN 1840. — The type specimen (in Brit. Mus. Nat. Hist.; cat. no. R. 273) is a non-Plesiosaurian bone fragment with a superficial resemblance to a Plesiosaurian propodial.

Pliosaurus phosphaticus STEFANO 1903. — This species is apparently based upon Crocodilian material.
Teratmosaurus crocodilinus QUENSTEDT 1858. — According to Brown (1894, p. 749) this species is based upon Ichthyosaurian teeth.
8. Index

The numerals in brackets refer to the numbers in the tabular synopsis.

The other numerals refer to the pages.

Alzadasaurus kansasensis [237] 35
— pembertoni [234] 35
— riggsi [245] 36
— tropicus [290] 38
Aphrosaurus jurlongi [285] 38
Apractocleidus teretipes [22] 24
Aristonectes parvidens [293] 7, 17, 39
Brachauchenius lucasi [253] 36
Brancasaurus brancai [85] 17, 27
Brimosaurus grandis [247] 18, 36, 42
— crassicostatus 42
— leucospelus . 41
— maccoyi [305] 39
— magnus [280] 5, 38
— neocomiensis 41
— planus [4, 84] 23, 27
— sp. (Chile) [294] 18, 39
— sutherlandi 42
“Cimoliasaurus” andium [296] 18, 39
— brevier [15, 98] 24, 28
— cantabrigenis [9] 18, 20, 23, 41
— hirzbergi [145] 30, 42
— lissaeensis [130] 29, 42
— portlandicus 41
— sp. (Portugal) [126] 29
— sp. (Russia, European) [188] 32
— sp. ” ” [189] 32
— sp. ” ” [191] 33
— teplicensis [131] 29, 42
— vicinus [132] 29, 42
Colymbosaurus? brachistospondylus
[16, 193] 24, 33
— dutertrei [104] 28, 42
— manseli [17] 24
— megadectes [18] 24
— portlandicus [13, 94] 24, 27, 41
— sclerodirus [194] 18, 33
— sp. [195] 33
— trochanterius [19, 96, 196], 24, 27, 33, 41
Cryptocleidus (Apractocleidus?) aldingeri
[227] 35
— ? beaugrandi [97] 27
— eurymerus [23] 24
— kimmeridgensis [141] 30, 42
— oxoniensis [24] 24
— richardsoni [25] 25, 41
— simbirskensis [203] 33
— ? sp. [204] 33
Discosaurus planior [282] 38
— vetustus [283] 38
Dolichorhynchops oeobeni [249] 36
— ? sp. [308] 39, 41
Elasmosaurus amalitskii 47
— constictus [1] 18, 23
— ? gigas [163, 164] 31
— ? kursensis [177] 19, 32
— morgani [243] 36
— orskensis [175] 19, 32
— platynurus [235] 35
— ? sachalinensis [213] 34, 42
— ? serdobensis [176] 19, 32
"Elasmosaurus” helmerseni [165, 166, 174] 31, 32
— intermedius [260] 18, 36, 42
— orientalis [277] 36, 42
— sternbergi [262] 37, 42
Embaphias circulosus [259] 36
Eretmosaurus dubius [61] 19, 26
— rugosus [66, 74] 19, 26
Eurycleidus arcuatus [71] 19, 26
— megacephalus [69, 155] 26, 31
Fresnosaurus drescheri [286] 38
Haematosaurus lanceolatus [114] 28, 43
Hunosaurus fossili [133] 29, 43
Hydralmosaurus serpentinus [236] 35
Hydrotherosaurus alexandrei [287] 38
A revision of the classification of the Plesiosauria

Ischyrodon meriani .. 41
Ischyrotherium antiquum 43
Isorosaurus litoralis [134] 29, 43
Kronosaurus queenslandicus [311] 40
Leptolepidus capensis [222] 19, 34
Leurospodus ultimus [233] 35
— grossourei [109] ... 28
— pachydeirus [37, 110] 25, 28
Macroplata longirostris [64] 26
— teuviceps [70] .. 26
Mausaurus gardneri [3] .. 19, 23
— haasti [313] .. 19, 21, 40
— latibrachialis [318] ... 40, 43
Megaleusaurus rex [275] 37
— macropterus [51] ... 25
Mornosaurus stocki [288] 38
Muraenosaurus elasmosauroides [197] 20, 33
— fahrenkohli [198] .. 20, 33
— leddsi [26, 202] ... 24, 33
— mazetieri [101] ... 28
— plicatus [27, 100] ... 24, 28, 41
— purbecki [199] ... 20, 33
— † reedi [272] .. 37
— † sp. (France) [102] .. 28
— † sp. (Russia, European) [200] 33
— † sp. " " [201] ... 33
— † truncatus [20, 99] ... 24, 28
Nothosaurus occidus .. 43
Ogmodius martini [242] ... 36
Oligosaurus grandaeus [268] 37, 43
Ororosaurus pavocephrius [265] 37, 43
Pantosaurus striatus [276] 37, 43
Peloneustes philarchus [38, 209, ?231] 25, 33, 35
— † sp. [173] .. 32
Picro cleidus beloticis [28] 24
Pipto meus hexagonus [256] 36, 43
— megalopor us [257] ... 36, 43
— microporus [258] ... 36, 43
Plirospodus plicatus [264] 37, 43
Pistosaurus grandaeus [1124, 158] 29, 31
— longaeus [159] ... 31
— † sp. [125] .. 29
Plesi osaurus nitidus .. 42
Plesi osaurus † barathi cus [153] 31
— † bitractensis [157, 121] 26, 29
— † brachycephalus .. 42
— † brachytyrgiatus [146] 20, 30
— † carinatus .. 42
— † cliduchus .. 41
— † coelospondylyus [78] 27, 43
— † devalqui [117] ... 29
— † doedicomus ... 43
— † dolichodeirus [55, ?118, 149, ?150] 20, 25, 29, 30, 41
— † eleutheraxon [56] .. 25
— † erraticus [79] .. 27, 43
— † etheridgi ... 42
— † guilemimp ateronis [147] 20, 21, 30, 42
— † hexagonalis ... 41
— † hexatarsostinus .. 42
— † ichthyspondylyus ... 41
— † infraplanus .. 41
— † keuperinus [152] .. 31
— † macromus [54] ... 25
— † mac rospodylus ... 42
— † macrourus .. 42
— † neogaeus [297] ... 39, 43
— † nothosauroides [148] 30
— † pachyomus [92] .. 27, 43
— † pentagonus [119] ... 29
— † pentatarsostinus .. 42
— † platydeirus [58] ... 26, 43
— † plicatus .. 41
— † posidoniae [160] .. 31, 43
— † robustus [151, 212] 31, 34
— † sp. (Germany) [162] 31
— † sp. (Portugal) [127] 29
— † sterrodeirus .. 42
— † subtrigonus [53] .. 25
— † subdepressus .. 41
— † suevicus [161] ... 31, 43
— † Sutherlandi .. 42
— † trigonus [120] ... 29
— † winspitensis .. 41
"Plesi osaurus" affinis [48] 25, 41
— † balticus [171, ?186] 20, 32
— † (Eretmosaurus?) bavaricus [157] 31, 43
— † bernardi [10, 1170, ?187] 18, 20, 23, 32, 41
— † brevijemor [278] ... 37, 43
— † conybeari [52] ... 20, 25
— † costatus [75, 123] ... 21, 26, 29
— † degenhardti [86] .. 27
— † ellipsoidospondylus [21, 49, 103] 24, 25, 28, 43
— † giganteus [41] ... 25, 43
— † gouldi [270, 271] ... 37, 43
<table>
<thead>
<tr>
<th>Specimen</th>
<th>Page Numbers</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>gulo [261]</td>
<td>37, 43</td>
<td></td>
</tr>
<tr>
<td>gurgitis [137]</td>
<td>30, 43</td>
<td></td>
</tr>
<tr>
<td>haukinsi [73, 76]</td>
<td>21, 26, 42</td>
<td></td>
</tr>
<tr>
<td>hesternus [289]</td>
<td>38, 43</td>
<td></td>
</tr>
<tr>
<td>holmsi [314]</td>
<td>21, 40, 43</td>
<td></td>
</tr>
<tr>
<td>hoodi [315]</td>
<td>21, 40, 43</td>
<td></td>
</tr>
<tr>
<td>houseaux [80]</td>
<td>27, 43</td>
<td></td>
</tr>
<tr>
<td>kanzleri [89]</td>
<td>27, 43</td>
<td></td>
</tr>
<tr>
<td>latispinus [5, 91, 226]</td>
<td>23, 27, 35, 43</td>
<td></td>
</tr>
<tr>
<td>limrophilos [87]</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>mackayi [319]</td>
<td>40, 43</td>
<td></td>
</tr>
<tr>
<td>macrocephalus [67, 72]</td>
<td>21, 26, 42</td>
<td></td>
</tr>
<tr>
<td>maureanicus [224]</td>
<td>21, 34, 43</td>
<td></td>
</tr>
<tr>
<td>mexicanus [284]</td>
<td>38, 43</td>
<td></td>
</tr>
<tr>
<td>irgisensis [207]</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>orientalis [180]</td>
<td>21, 34</td>
<td></td>
</tr>
<tr>
<td>planus [45]</td>
<td>37, 43</td>
<td></td>
</tr>
<tr>
<td>valdensis [6, 88]</td>
<td>23, 27</td>
<td></td>
</tr>
<tr>
<td>Polycotylus brevispondylus [182]</td>
<td>21, 32</td>
<td></td>
</tr>
<tr>
<td>rostratus [68]</td>
<td>21, 26</td>
<td></td>
</tr>
<tr>
<td>recentior [42]</td>
<td>25, 43</td>
<td></td>
</tr>
<tr>
<td>nordmanni [192]</td>
<td>33, 43</td>
<td></td>
</tr>
<tr>
<td>phillipsi [14, 95]</td>
<td>24, 27, 42</td>
<td></td>
</tr>
<tr>
<td>recenitor [42]</td>
<td>25, 43</td>
<td></td>
</tr>
<tr>
<td>rostratus [68]</td>
<td>21, 26</td>
<td></td>
</tr>
<tr>
<td>shirleyensis [273]</td>
<td>32, 23, 43</td>
<td></td>
</tr>
<tr>
<td>simplex [43]</td>
<td>25, 43</td>
<td></td>
</tr>
<tr>
<td>smithi [2]</td>
<td>23, 43</td>
<td></td>
</tr>
<tr>
<td>sp. (New Jersey) [279]</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>traversi [320]</td>
<td>40, 43</td>
<td></td>
</tr>
<tr>
<td>vaccinulensis [267]</td>
<td>37, 43</td>
<td></td>
</tr>
<tr>
<td>valdensia [6]</td>
<td>23, 27</td>
<td></td>
</tr>
<tr>
<td>Pliosaurus aequalis [44]</td>
<td>25, 43</td>
<td></td>
</tr>
<tr>
<td>andrewsi [39, 214]</td>
<td>25, 34</td>
<td></td>
</tr>
<tr>
<td>brachydeirus [33, 105]</td>
<td>24, 28, 42</td>
<td></td>
</tr>
<tr>
<td>brachyponsyndylus [34, 206]</td>
<td>25, 33, 42</td>
<td></td>
</tr>
<tr>
<td>evansi</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>gamma [40]</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>giganteus</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>grandis</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>irgisensis [207]</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>macroponsyndylus</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>phosphaticus</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>planus [45]</td>
<td>25, 43</td>
<td></td>
</tr>
<tr>
<td>rossicus [208]</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>supra juryensis</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>sutherlandi</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>wosinskii</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>"Pliosaurus" chilensis [295]</td>
<td>21, 39, 43</td>
<td></td>
</tr>
<tr>
<td>Polycotylus brevispondylus [182]</td>
<td>21, 32</td>
<td></td>
</tr>
<tr>
<td>dolichopus [250]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>epi gurgitis [183]</td>
<td>21, 32</td>
<td></td>
</tr>
<tr>
<td>ichtyospondylus [184]</td>
<td>21, 32</td>
<td></td>
</tr>
<tr>
<td>latipinna [179, 248]</td>
<td>32, 36</td>
<td></td>
</tr>
<tr>
<td>orientalis [180]</td>
<td>21, 32</td>
<td></td>
</tr>
<tr>
<td>supra juryensis [111]</td>
<td>28, 43</td>
<td></td>
</tr>
<tr>
<td>- tenuis [317]</td>
<td>40, 43</td>
<td></td>
</tr>
<tr>
<td>- ultimus [181]</td>
<td>21, 32</td>
<td></td>
</tr>
<tr>
<td>Polyptychodon archiaci</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>- continuus [8]</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>- hudsoni</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>- interruptus [7, 90, 129, 139, 185]</td>
<td>23, 27, 29, 30, 32</td>
<td></td>
</tr>
<tr>
<td>Purransaurus potens</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Rhomaleosaurus carinatus [46, 112]</td>
<td>25, 28</td>
<td></td>
</tr>
<tr>
<td>- cramptoni [59]</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>- morincinus [113]</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>- ? propinquus [65]</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>- thoronti [60]</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>- victor [154]</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>- zelandicus [62]</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Scanisaurus nazarevi [168, 178]</td>
<td>31, 32</td>
<td></td>
</tr>
<tr>
<td>Seeleysaurus holzmadenensis</td>
<td>21, 42</td>
<td></td>
</tr>
<tr>
<td>Simolestes indicus [216]</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- novackianus [221]</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>- vorax [47, 211]</td>
<td>25, 34</td>
<td></td>
</tr>
<tr>
<td>Sinopliosaurus weiguanensis [215]</td>
<td>34, 43</td>
<td></td>
</tr>
<tr>
<td>Spondylosaurus frearsi</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Sthenarosaurus dawkinsi [63, 122]</td>
<td>26, 29</td>
<td></td>
</tr>
<tr>
<td>Streptosaurus macroneris [35, 106, ?205]</td>
<td>25, 28, 33, 42</td>
<td></td>
</tr>
<tr>
<td>Styzosaurus browni [238]</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Styzosaurus snowi [239]</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Termatosaurus alberti [77, 156]</td>
<td>21, 26, 31</td>
<td></td>
</tr>
<tr>
<td>- crocodilinus</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Thalassiosaurus ischiadicus [240]</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Thalassomedon haningtoni [244]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Thalassonomosaurus marshi [241]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Thaphrosaurus lockwoodi [281]</td>
<td>38, 43</td>
<td></td>
</tr>
<tr>
<td>Thaumatosaurus callorhensis</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>- mosquensis</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>- oolithicus [144]</td>
<td>4, 30, 43</td>
<td></td>
</tr>
<tr>
<td>Tremamesacile durobrivensis [29]</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>- platycilus [30]</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Tricleidus laramiensis [274]</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>- seeleyi [31]</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Svalbardensis [228]</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Trinacromerum anomynum [251]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>- bentonianum [254]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>- kirki [255]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>- latimanus [263]</td>
<td>37, 43</td>
<td></td>
</tr>
<tr>
<td>- willistoni [252]</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Uronautes cetiformis [266]</td>
<td>37, 43</td>
<td></td>
</tr>
<tr>
<td>Woolungasaurus glendoverensis [300]</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>- sp. (S. Australia) [298]</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>- sp. (Queensland) [299]</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>
9. Addendum

Recently the descriptions of the two Plesiosaurian species briefly dealt with below became available to the writer. Since the major part of the present paper was already set up, the species in question could not be mentioned in the tabular synopsis of the distribution of the Plesiosaurians (above, pp. 23–40).

2. *Polyptychodon hudsoni* Welles & Slaughter 1963. From the Eagle Ford Shale (Turonian) near Dallas, Texas. Teeth, fragments of skull and mandible, and a vertebra “which may or may not belong to the same individual, or even species” (Welles & Slaughter 1963, p. 133). — The poorly-known genus *Polyptychodon* has usually been grouped with the Polycotylidae (Romer 1953, p. 595; Saint-Seine in Piveteau 1955, p. 433; v. Huene 1956, p. 409; and other authors). Welles & Slaughter. (1963, p. 131) referred *P. hudsoni* to the Plesauridae. Until more is known about *Polyptychodon* it seems more appropriate to group this genus with the Polycotylidae, a family to which all other known U. Cretaceous brachydiran Plesiosaurians are referred.
10. References

A revision of the classification of the Plesiosauria

— 1868a. Note on the fossil Reptiles, near Fort Wallace. In Le Conte 1868, p. 68.

— L U A:3 P. O. Persson

A revision of the classification of the Plesiosauria

— 1854. Remarks on extinct saurian from Greenville, Clark County, Arkansas. Ibid. 7, p. 72, 1 pl.
— 1865. Memoir on the extinct reptiles of the Cretaceous formations of the United States.
— 1870b. Description of Nothosaurops occiduus. Ibid. 22, p. 74.
LINDER, H., 1913. Beiträge zur Kenntnis der Plesiosaurier-Gattungen Peloneustes und Pliosaurus,
LONGMAN, H., 1924. A new gigantic marine Reptile from the Queensland Cretaceous, Kronosaurus
Pl. 4.
Figs. 1–5.
— 1889a. Catalogue of the fossil Reptilia and Amphibia in the British Museum. 2. Orders
MEHL, M. G., 1912. Muraenosaurus? reedi, sp. nov. and Tricleidus? laramiensis Knight, American
MILLER, H., 1858. The cruise of the Betsey; or, a summer ramble among the fossiliferous deposits
NOVOZHILOV, N. J., 1948. Two new ploiosaurs from the Lower Volga beds in Povolzhe (right bank
1–2.
Pp. 43–126.
— 1840a. A description of a Specimen of the Pliesiosaurus macrocephalus in the collection of
43–45.
A revision of the classification of the Plesiosauria

— 1850. Description of the fossil reptiles of the Chalk Formation. In Dixon, E., The Geology
Pp. xix+184.
— 1862. On the remains of a plesiosaurian reptile (Plesiosaurus australis) from the Oolitic
122—123.
— 1870. Notice of some saurian fossils discovered by J. H. Hood, Esq., at Waipara, Middle

— 1959. Reptiles from the Senonian (U. Cret.) of Scania (S. Sweden). Arkiv Miner. Geol. 2,
— 1960. Lower Cretaceous Plesiosaurians (Rept.) from Australia. Lunds Univ. Årsskr. N. F.
Fig. 1. Pl. 1.

1—210. Pls. 1—17.

Picquet, F. J., & Campiche, G., 1858—1860. Description des fossiles du terrain Crétacé des en­
Pls. 1—43.

556 figs.

Popeneoe, R., Imlay, R., & Murphy, M. A., 1960. Correlation of the Cretaceous formations of
Pp. 1491—1540. Figs. 1—5. 1 chart.

Pravoslawiev, P. A., 1916. Restes d’un Elasmosaurus trouvés dans le Crétacé supérieur de la

A revision of the classification of the Plesiosauria

A revision of the classification of the Plesiosauria

11. List of works arranged with regard to the regional distribution of the finds of Plesiosaurian remains

Works containing extensive descriptions, or revisions, or being otherwise of particular interest, are denoted with an asterisk.* — Some stratigraphical works which have been used for the correlation etc. of the find localities are denoted with a circle.0

Works of general character (manuals etc.) are not mentioned in the list.

Europe

The British Isles: Andrews 1895, 1896, 1897, 1909, 1910, 1910a*, 1913*, 1922, 1922a; Arkell 1933°, 1956°; Carte & Baily 1863; Conybeare 1824; Deane et al. 1961°; Delair 1959; Harker & Barrow 1908°; Hudson 1960°; Hulke 1870; Huxley 1858; Linder 1913; Lydekker 1889a*; Mansel-Pleydell 1888, 1889; Miller 1858; Owen 1840, 1840a, 1840—1845, 1850, 1851*, 1854, 1861, 1861a, 1861b, 1863, 1864*, 1865*, 1869*, 1878; Phillips 1871; Seeley 1865, 1865a, 1869, 1871, 1871a, 1874, 1874a, 1877, 1877a, 1892, 1893; Smellie 1915, 1918; Sollas 1881°; Stutchbury 1846; Swinton 1930, 1930a, 1931, 1948; Tarlo 1958a, 1959, 1959a, 1960*; Tate & Blake 1876; Watson 1909, 1910, 1911, 1911a; White 1940.

N. W. continental Europe: Arkell 1956°; Barrois 1875; Beneden 1880; Bigot 1938; Corroy 1928; Cuvier 1824; Deane et al. 1961°; Deslongchamps 1872; Dollo 1909; Follet 1949; Huene & Maubeuge 1952; Koken 1905; Lennier 1889; Lex. Stratigr. Int. 1, 4, 1956°; Sauvage 1873, 1876, 1879*, 1880*, 1882, 1883, 1888, 1910—1911*; Tarlo 1960*; Wegner 1914°.

S. W. Europe: Sauvage 1897—1898*, 1898a.

Central Europe: Arkell 1956°; Augusta & Soukup 1940°; Bayer 1897, 1916°; Brandes 1914; Dames 1895°; Deane et al. 1961°; Edinger 1935; Fraas 1910°; Fritsch & Bayer 1905; Huene 1902, 1921, 1923*, 1929, 1934, 1935; Koken 1883; Meyer 1841, 1856, 1856a; Quenstedt 1852; Reiff 1935; Reuss 1856; Speyer 1929; Tarlo 1960°; Wagner 1852.

European Russia: Arkell 1956°; Bogolubov 1909, 1911*, 1912; Eichwald 1862, 1868; Fischer de Waldheim 1845, 1846; Kiprijanoff 1883°; Novozhilov 1948; Riabinin 1909; Rozhdestvensky 1947; Tarlo 1960°; Trautschold 1860, 1862, 1876.

Asia

N. Asia: Riabinin 1939.

E. Asia: Riabinin 1915; Tarlo 1960°; Young 1942, 1946.

S. Asia: Lydekker 1889, 1889a.

S. W. Asia: Haas 1958.
A revision of the classification of the Plesiosauria

Africa

N. E. Africa: Stromer 1935.
E. Africa: Huene 1938.
S. Africa: Andrews 1911.

The Arctic Region

Huene 1935; Persson 1962a; Riabinin 1936, 1939; Wiman 1914, 1916.

North America

Cobban & Reeside 1952; Cope 1868, 1868a, 1870*, 1872, 1875, 1876, 1877, 1894; Cragin 1888, 1891; Imlay 1944, 1952; Knight 1898, 1900; Le Conte 1868; Leidy 1851, 1854, 1865, 1870, 1870a, 1870b; Mehl 1912; Popenoe et al. 1960; Russel 1935; Stephenson et al. 1942; Welles 1943*, 1949, 1952*, 1953; Welles & Bump 1949; Wieland 1910; Williston 1889, 1903, 1906, 1908; Williston & Moodie 1913, 1917; Wilmarth 1938; Wilson et al. 1957, 1959.

South America

Cabrera 1941; Colbert 1949; Deecke 1896; Gervais in Gay 1848; Rusconi 1948, 1956; Woodward 1891.

Australia

Chapman 1914; Daintree 1872; Etheridge 1897*, 1904*; Howchin 1928; Laseron 1954; Lex. Stratigr. Int. 6, 5a, b, e, 1958—1959; Longman 1924, 1930, 1935; MacCoy 1867; Persson 1960*; Romer & Lewis 1960; Teichert & Matheson 1944; White 1935.

New Zealand

Haast 1870; Hector 1874*; Lex. Stratigr. Int. 6, 4, 1959; Owen 1862, 1870.
Contents

1. Introduction ... 3
2. Discussion of the classification 3
3. Notes on selected genera and species 17
4. Tabular synopsis of the distribution of the Plesiosauria . 23
 The British Isles 23
 North-western Continental Europe 27
 South-western Europe 29
 Central Europe ... 29
 The Baltic Region 31
 European Russia .. 32
 Asia, northern .. 34
 Asia, eastern ... 34
 Asia, southern .. 34
 Asia, south-western 34
 Africa, north-eastern 34
 Africa, eastern ... 34
 Africa, southern .. 34
 Africa, south-western 34
 Africa, north-western 34
 The Arctic Region 35
 North America, central 35
 North America, eastern 37
 North America, south-eastern 38
 North America, southern 38
 North America, western 38
 South America, northern 38
 South America, eastern 38
 South America, southern 38
 Australia, eastern and southern 39
 Australia, western 40
 New Zealand ... 40
5. Selective synonym list 41
6. List of rejected species 42
7. “Non-Plesiosaurians” 43
8. Index .. 44
9. Addendum .. 47
10. References .. 48
11. List of works arranged with regard to the regional distribution of the finds of Plesiosaurian remains 58